Set Me Up

How to Think in Sets

Brian Hansen
brian@tf3604.com
@tf3604

#*PASS
< > SQLSATURDAY
DENVER | SEP 15 2018

36.4

COMES:

= 20 Years working

Brian Hansen with SQL Server

= Started as
developer, still
trying to keep up

= Administration
going back to 6.5

children.org = Fascinated with SQL
internals

4 brian@tf3604.com children
y @tf3604.com international

www.tf3604.com/sets

<D

Agenda

* Why sets?
* Anti-patterns and solutions
» Set-based constructs

<D

Why Sets?

» Math: set theory (Cantor, 1874)
* Rigorous proofs of set operations
« Relational model / relational algebra (Codd, 1970)
* Very stable, still basis for most RDBMS engines

« SQL Server internal operators are optimized for
sets
* However, most code still operates row-by-row
 Some newer operations run in “batch” mode

<2

<2

Test Harness (SQL)

declare @loopNbr int = 0;

while @loopNbr < 5

begin
declare @TestStartTime datetime2 = sysdatetime();
-- Execute test

declare @TestEndTime datetime2 = sysdatetime();

insert dbo.ExecutionResult (TestName, StartTime, EndTime)
values (N'Test Name', @TestStartTime, @TestEndTime);

select @loopNbr += 1;
end

<2

Test Harness (SQL) — Results

with MostRecentTestRuns as

(

select top 5 xr.ID, xr.TestName, xr.StartTime, xr.EndTime,
datediff(millisecond, xr.StartTime, xr.EndTime) RunTimeMs

from dbo.ExecutionResult xr

where xr.TestName = N'Test Name'

order by xr.StartTime desc

), Middle3Runs as

(

)

select xr.ID, xr.TestName, xr.StartTime, xr.EndTime, xr.RunTimeMs
from MostRecentTestRuns xr

order by xr.RunTimeMs

offset 1 row fetch next 3 rows only

select ID, TestName, StartTime, EndTime, RunTimeMs,

(select avg(RunTimeMs) from Middle3Runs) AvgRunTimeMs

from Middle3Runs;

<2

Test Harness (C¥)

List<TimeSpan> executionTimes = new List<TimeSpan>();
for (int executionCounter = 0; executionCounter < 5; executionCounter++)
{
Stopwatch clock = Stopwatch.StartNew();
// Execute test
/] ...
clock.Stop();
executionTimes.Add(clock.Elapsed);
}
executionTimes.RemoveMinAndMaxValues();
double averageTimeInMilliseconds = executionTimes.Average(t => t.TotalMilliseconds);

<2

Cursors and Loops

» (Cursors — heavyweight objects

* Many infrequently used features enabled by default
* If necessary, declare as fast_forward read only

 WHILE loops
* More lightweight

* However, still tend be slow (compared to procedural
languages)

<2

Demo

Cursors and Loops

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

Subqueries

select oh.OrderId,
oh.OrderDate,
oh.Customerld,

select top 1 od.ProductId
from dbo.OrderDetail od
where od.OrderId = oh.Orderld
order by od.OrderDetailld

) LinelProductId

from dbo.OrderHeader oh;

select oh.OrderId,

oh.OrderDate,
oh.Customerld

from dbo.OrderHeader oh

where

(

select top 1 od.ProductId
from dbo.OrderDetail od

where od.OrderId = oh.Orderld
order by od.OrderDetailld

) = 4926;

<2

Demo

Subqueries

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

User-Defined Functions (UDFs)

e Scalar
« Returns single value of any data type

e (Call as select dbo.ScalarFunc(paraml, param2)

* Multi-Statement Table-Valued *
« Returns table variable populated by function code

e (Call as select * from dbo.TablevaluedFunc (paraml, param2)

* Inline Table-Valued: single select statement

* Improved performance in SQL 2017 under certain conditions (“adaptive join processing”) < >

Demo

User-Defined Functions

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

Triangle Joins

Cus’mmérld CustomerStatus Comment WalidFrom ValidTo

12345 Mone Acquired via Purchased List 0070103 2017403402
12345 Contact Contacted via outbound call 200703402 20070407
12345 Prospect Requested info via website 0170407 20170606
12345 Customer Purchased product via inbound call 20170606 599912-11
select *
from dbo.PersonDim pd
where pd.CustomerStatus = 'Contact’
and
(

select top 1 pnext.CustomerStatus
from dbo.PersonDim pnext
where pnext.CustomerId = pd.CustomerId
and pnext.ValidFrom > pd.ValidFrom
order by pnext.ValidFrom

) = 'Prospect’;

<2

Triangle Joins

Eustumérld CustomerStatus Comment ValidFrom ValidTo

12345 Mone Acquired via Purchased List 20170103 20170302
12345 Contact Contacted via outbound call 200170302 20170407
12345 Prospect Requested info via website 201704407 20170606
12345 Customer Purchased product via inbound call 20170606 5599-12-31
Eustnmn:a-rld CustomerStatus Commenrt ValidFrom ValidTo
12345 Mone Acquired via Purchased List 20170103 20170302
12345 Contact Contacted via outbound call 20070302 20170407
12345 Prospect Reqguested info via website 20170407 20170606
12345 Customer Furchased product via inbound call 20170606 53599-12-31

<2

Windowing Functions

+ ROW NUMBER, RANK
- SUM, AVG, ..
- LEAD, LAG

* OVER (partition by tbl.PartitionColumn
order by tbl.SortColumn rows ...)

<2

Demo

Running Aggregations

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

SSIS: Command Component

Productld,NewUnitPrice
1,49.980000
2,2.260000

/ 3,97.720000
E=" FFSRC_CavFile 4’68'820000

> 5,64.050000
6,30.610000

El‘l l !ﬁ OLECMD_UpdateCorpDEB

update dbo.Product
set UnitPrice = ?

where ProductlId = ?;

<2

SSIS: Staging Table

drop table if exists
stage.ProductPrice;

create table
stage.ProductPrice

(
ProductId int,

NewUnitPrice money

)

a
gﬁ SQAL_CreateStageTable — g DFT_LoadStage

= FFSRC_CsvFile
5 Fesre.

€ OLEDST_StageProductPrice

l

gﬁ SGL_UpdateFromStage

Data access mode:

Table or view - fast load

update prod

set UnitPrice = stg.NewUnitPrice
from dbo.Product prod

inner join stage.ProductPrice stg
on stg.ProductId = prod.ProductId;

Mame of the table or the view:

22| [stage].[ProductPrice]

<2

Demo

SSIS

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

C*: Singleton Inserts

sal = "insert stage.DataFile (FilePath, LastWriteTime) values (@FilePath,
@LastWriteTime);";

foreach (FileInfo file in _files)

{
using (SglCommand command = new SqlCommand(sgl, _connection))
{
SglParameter filePathParameter = new SqlParameter("FilePath", file.FullName);
command.Parameters.Add(filePathParameter);
SglParameter writeTimeParameter =
new SglParameter("LastWriteTime", file.LastWriteTime);
writeTimeParameter.SqlDbType = SqlDbType.DateTime2;
command.Parameters.Add(writeTimeParameter);
command.ExecuteNonQuery();
}
}

<2

C*: Bulk Insert

using (SqlBulkCopy bulkCopy = new SqlBulkCopy/(

connection,
Sq%?g%kCopyOptions.TableLock | SqlBulkCopyOptions.UseInternalTransaction,
nu

{
bulkCopy.BulkCopyTimeout = 300;
bulkCopy.ColumnMappings.Clear();
bulkCopy.ColumnMappings.Add("FilePath", "FilePath");
bulkCopy.ColumnMappings.Add("LastWriteTime", "LastWriteTime");
bulkCopy.DestinationTableName = "stage.DataFile";
using (DataTable fileTable = CreateFilelListDataTable())
{

bulkCopy.WriteToServer(fileTable);

}

}

<2

Demo

NET Code

D DOD0 ODRDO DO VLB

BLDBRLDRBLKRBBBC I BOBB
DRORLYBORDRRARY DDDD
D0RLO0OB0RRORA W BB

DOD) D00 BB

<D

Thinking in Sets: A 90° Shift

Think about columns first, then rows

Use CTEs to help break down processing steps
Use CASE statements to handle IF ... THEN logic
UDFs are nice for encapsulation ...

« But they can devolve into non-set processing
 Except for table-valued functions
« So SQL can involved repeated code

<D

Case Study: Preferred Payment Method

* Legacy Windows app — Customer screen

e Customers have various products they may subscribe
to; may have different payment methods

« Customer screen displays a “preferred” payment
method

» Developers created scalar user-defined function

« Called once each time the form gets opened

create function dbo.fnGetPaymentPreference
(@CustomerId int) returns nvarchar(50)

as ..

<2

Case Study: Preferred Payment Method

« My task: daily sync of the preferred payment method
for ~4 million customers to another system

select c.CustomerlID,
dbo.fnGetPaymentPreference
(c.CustomerID) PreferredPaymentMethod
from dbo.Customer c;

* (0.74 ms per customer)
 Runs for 48 min 47 sec.

<2

Case Study: Preferred Payment Method

Re-write as set-based SQL

UDF consists of five separate SQL statements to
populate variables

<D

Case Study: Preferred Payment Method

SELECT @PaymentCountl = COUNT(Q1.ID)
FROM
(SELECT MAX(sub.ID) AS ID
FROM dbo.Subscription sub
INNER JOIN dbo.PaymentType pt
ON pt.ID = sub.PaymentTypeld
WHERE sub.CustomerId = @CustomerlId
AND sub.Status = "Active'
AND pt.type = 'Credit Card’
GROUP BY sub.PaymentTypeID, sub.cclLastFour) AS

01

<2

Case Study: Preferred Payment Method

SELECT @PaymentCount2 = COUNT(Q2.ID)
FROM
(SELECT MAX(sub.ID) AS ID
FROM dbo.Subscription sub
INNER JOIN MMS.dbo.PaymentType pt
ON pt.ID = sub.PaymentTypeld
WHERE sub.CustomerId = @CustomerlId
AND sub.Status = 'Active’
AND pt.type <> 'Credit Card’
GROUP BY sub.PaymentTypeID) AS Q2

<2

Case Study: Preferred Payment Method

SELECT @PaymentCount3 =
CASE WHEN (@PaymentCountl IS NULL)
AND (@PaymentCount2 IS NULL) THEN ©
WHEN (@PaymentCountl IS NULL)
THEN @PaymentCount?2
WHEN (@PaymentCount2 IS NULL)
THEN @PaymentCountl
ELSE @PaymentCountl + @PaymentCount2
END

<2

Case Study: Preferred Payment Method

SELECT @TotalPaymentCount =
ISNULL (@CCPaymentCount, ©) +
ISNULL (@NonCCPaymentCount, ©0);

<2

Case Study: Preferred Payment Method

SELECT @PaymentType = MAX(CASE
WHEN pt.type = 'Credit Card' THEN 'Credit
Card’
ELSE pt.name
END)
FROM dbo.Subscription sub
INNER JOIN dbo.PaymentType pt
ON pt.ID = sub.PaymentTypelD
WHERE sub.CustomerId = @CustomerlId
AND so.Status = "Active’
GROUP BY sub.CustomerlId

<2

Case Study: Preferred Payment Method

SELECT @PaymentMethod =

CASE WHEN @PaymentCount3 IS NULL THEN
'"None'

WHEN @PaymentCount3

WHEN @PaymentCount3
@PaymentType

ELSE 'Multiple’

© THEN 'None'
1 THEN

END

RETURN @PaymentMethod

<2

Case Study: Preferred Payment Method

with CCPaymentCount as

(
select Q1.CustomerId, COUNT(Q1.ID) Cnt

FROM
(SELECT sub.CustomerId, MAX(sub.ID) AS ID
FROM dbo.Subscription sub
INNER JOIN dbo.PaymentType pt
ON pt.ID = sub.PaymentTypelD
WHERE sub-Customerid=—@Customerid
ANB—sub.Status = "Active’

AND pt.type = 'Credit Card’
GROUP BY sub.CustomerId, sub.PaymentTypelID, sub.ccLastFour)

AS Q1
GROUP BY Q1.CustomerlId

)

<2

Case Study: Preferred Payment Method

, NonCCPaymentCount as

(
SELECT Q2.CustomerId, COUNT(Q2.ID) Cnt

FROM
(SELECT sub.CustomerId, MAX(sub.ID) AS ID

FROM dbo.Subscription so
INNER JOIN dbo.PaymentType pt
ON pt.ID = sub.PaymentTypelD
WHERE sub-Customerld=@Customerid
ANB—sub.Status = 'Active’
AND pt.type <> 'Credit Card’
GROUP BY sub.CustomerId, sub.PaymentTypeID) AS Q2

GROUP BY Q2.CustomerlId

<2

Case Study: Preferred Payment Method

, TotalPaymentCount as

(
select coalesce(pl.CustomerId, p2.CustomerId) CustomerId,
isnull(pl.Cnt, ©) + isnull(p2.Cnt, ©) Cnt
from CCPaymentCount ccCount
full outer join NonCCPaymentCount nonCcCount
on nonCcCount.CustomerId = ccCount.Customerld
)

<2

Case Study: Preferred Payment Method

, PaymentType as
(
select sub.CustomerId, MAX(CASE
WHEN pt.type = 'Credit Card' THEN 'Credit Card’
ELSE pt.name
END) TypeName
FROM dbo.Subscription so
INNER JOIN dbo.PaymentType pt
ON pt.ID = sub.PaymentTypelD
WHERE sub-Customerlid—=—@customertd
—AND—so.Status = "Active’
GROUP BY sub.CustomerlId

)

<2

Case Study: Preferred Payment Method

, FinalResult as

(
select pc.CustomerlId,
case when pc.Cnt = 1 then pt.TypeName
else "Multiple’
end PaymentType
from TotalPaymentCount pc
inner join PaymentType pt
on pt.CustomerId = pc.CustomerlId
)

<2

Case Study: Preferred Payment Method

select c.CustomerId,
isnull(fr.PaymentType, 'None') PaymentType
from dbo.Customer c
left join FinalResult fr
on c.CustomerId = fr.Customerld;

<2

Case Study: Preferred Payment Type

 Still requires 3 passes through the data, so
definitely room for improvements on that front

« However ... this rewrite now runs in about 3
seconds (about a 1000x improvement)

» Performance tuning is not always about squeezing
every bit out of the query ...

* It's about “good enough”

<D

So If sets are good, really big sets are better, right?

* Transaction log impacts

* Long-running transactions and clearing the log
* Log growth

* Log space reservation
 What if DB is restored to point in the middle of the
operation?

» Splitting up sets is a bit of an art

<D

Other Stuff

* In-Memory OLTP changes things
« aka Hekaton, new in SQL 2014
 |f natively compiled
* Loops with data access perform well
* Beware of limitations

<D

Key Take-Aways

» Cursors are usually inefficient
* If necessary, declare as fast_forward read only

 Still necessary for lots of admin functionality
* Pre-2012, still best way to do running totals, etc.

» Triangle joins are evil

<2

Key Take-Aways
* Avoid most UDFs

 Scalar and multi-statement TVFs with data access
tend to perform poorly

« CLR with data access tends to perform poorly

* Inline TVFs generally optimize well and tend to
perform nicely

<D

Key Take-Aways

Embrace row number(): It is much more useful
than just for counting rows

Embrace windowing functions

Embrace apply
» Easy way to improve many scalar UDFs

May need to split up very large sets

<D

Thank You

This presentation and supporting materials can be
found at www.tf3604.com/sets.

Slide deck
Scripts
Sample database

brian@tf3604.com < @tf3604

<2

http://www.tf3604.com/sets

