
Brian Hansen

brian@tf3604.com

@tf3604

Set Me Up
How to Think in Sets



 20 Years working 
with SQL Server

 Started as 
developer, still 
trying to keep up

 Administration 
going back to 6.5

 Fascinated with SQL 
internals

Brian Hansen

@tf3604.com

brian@tf3604.com

children.org

www.tf3604.com/sets



Agenda

• Why sets?

• Anti-patterns and solutions

• Set-based constructs



Why Sets?

• Math: set theory (Cantor, 1874)

• Rigorous proofs of set operations

• Relational model / relational algebra (Codd, 1970)

• Very stable, still basis for most RDBMS engines

• SQL Server internal operators are optimized for 

sets

• However, most code still operates row-by-row

• Some newer operations run in “batch” mode



RBAR

Can be external or internal



Test Harness (SQL)

declare @loopNbr int = 0;

while @loopNbr < 5

begin

declare @TestStartTime datetime2 = sysdatetime();

-- Execute test

-- ...

declare @TestEndTime datetime2 = sysdatetime();

insert dbo.ExecutionResult (TestName, StartTime, EndTime)

values (N'Test Name', @TestStartTime, @TestEndTime);

select @loopNbr += 1;

end



Test Harness (SQL) – Results

with MostRecentTestRuns as
(

select top 5 xr.ID, xr.TestName, xr.StartTime, xr.EndTime,
datediff(millisecond, xr.StartTime, xr.EndTime) RunTimeMs

from dbo.ExecutionResult xr
where xr.TestName = N'Test Name'
order by xr.StartTime desc

), Middle3Runs as
(

select xr.ID, xr.TestName, xr.StartTime, xr.EndTime, xr.RunTimeMs
from MostRecentTestRuns xr
order by xr.RunTimeMs
offset 1 row fetch next 3 rows only

)
select ID, TestName, StartTime, EndTime, RunTimeMs,

(select avg(RunTimeMs) from Middle3Runs) AvgRunTimeMs
from Middle3Runs;



Test Harness (C#)

List<TimeSpan> executionTimes = new List<TimeSpan>();

for (int executionCounter = 0; executionCounter < 5; executionCounter++)

{

Stopwatch clock = Stopwatch.StartNew();

// Execute test

// ...

clock.Stop();

executionTimes.Add(clock.Elapsed);

}

executionTimes.RemoveMinAndMaxValues();

double averageTimeInMilliseconds = executionTimes.Average(t => t.TotalMilliseconds);



Cursors and Loops

• Cursors – heavyweight objects

• Many infrequently used features enabled by default

• If necessary, declare as fast_forward read_only

• WHILE loops

• More lightweight

• However, still tend be slow (compared to procedural 

languages)



Demo
Cursors and Loops



Subqueries

select oh.OrderId,

oh.OrderDate,

oh.CustomerId,

(

select top 1 od.ProductId

from dbo.OrderDetail od

where od.OrderId = oh.OrderId

order by od.OrderDetailId

) Line1ProductId

from dbo.OrderHeader oh;

select oh.OrderId,

oh.OrderDate,

oh.CustomerId

from dbo.OrderHeader oh

where

(

select top 1 od.ProductId

from dbo.OrderDetail od

where od.OrderId = oh.OrderId

order by od.OrderDetailId

) = 4926;



Demo
Subqueries



User-Defined Functions (UDFs)

• Scalar

• Returns single value of any data type

• Call as select dbo.ScalarFunc(param1, param2)

• Multi-Statement Table-Valued *

• Returns table variable populated by function code

• Call as select * from dbo.TableValuedFunc (param1, param2)

• Inline Table-Valued: single select statement

* Improved performance in SQL 2017 under certain conditions (“adaptive join processing”)



Demo
User-Defined Functions



Triangle Joins

select *
from dbo.PersonDim pd
where pd.CustomerStatus = 'Contact'
and
(

select top 1 pnext.CustomerStatus
from dbo.PersonDim pnext
where pnext.CustomerId = pd.CustomerId
and pnext.ValidFrom > pd.ValidFrom
order by pnext.ValidFrom

) = 'Prospect';



Triangle Joins



Windowing Functions

• ROW_NUMBER, RANK

• SUM, AVG, …

• LEAD, LAG

• OVER (partition by tbl.PartitionColumn
order by tbl.SortColumn rows …)



Demo
Running Aggregations



SSIS: Command Component

update dbo.Product
set UnitPrice = ?

where ProductId = ?;

ProductId,NewUnitPrice
1,49.980000
2,2.260000
3,97.720000
4,68.820000
5,64.050000
6,30.610000



SSIS: Staging Table
drop table if exists 
stage.ProductPrice;

create table 
stage.ProductPrice
(

ProductId int,
NewUnitPrice money

);

update prod
set UnitPrice = stg.NewUnitPrice
from dbo.Product prod
inner join stage.ProductPrice stg
on stg.ProductId = prod.ProductId;



Demo
SSIS



C#: Singleton Inserts

sql = "insert stage.DataFile (FilePath, LastWriteTime) values (@FilePath, 
@LastWriteTime);";

foreach (FileInfo file in _files)
{

using (SqlCommand command = new SqlCommand(sql, _connection))
{

SqlParameter filePathParameter = new SqlParameter("FilePath", file.FullName);
command.Parameters.Add(filePathParameter);

SqlParameter writeTimeParameter = 
new SqlParameter("LastWriteTime", file.LastWriteTime);

writeTimeParameter.SqlDbType = SqlDbType.DateTime2;
command.Parameters.Add(writeTimeParameter);

command.ExecuteNonQuery();
}

}



C#: Bulk Insert

using (SqlBulkCopy bulkCopy = new SqlBulkCopy(
connection, 
SqlBulkCopyOptions.TableLock | SqlBulkCopyOptions.UseInternalTransaction, 
null))

{
bulkCopy.BulkCopyTimeout = 300;
bulkCopy.ColumnMappings.Clear();
bulkCopy.ColumnMappings.Add("FilePath", "FilePath");
bulkCopy.ColumnMappings.Add("LastWriteTime", "LastWriteTime");
bulkCopy.DestinationTableName = "stage.DataFile";
using (DataTable fileTable = CreateFileListDataTable())
{

bulkCopy.WriteToServer(fileTable);
}

}



Demo
.NET Code



Thinking in Sets: A 90° Shift

• Think about columns first, then rows

• Use CTEs to help break down processing steps

• Use CASE statements to handle IF … THEN logic

• UDFs are nice for encapsulation …

• But they can devolve into non-set processing

• Except for table-valued functions

• So SQL can involved repeated code



Case Study: Preferred Payment Method

• Legacy Windows app – Customer screen

• Customers have various products they may subscribe 
to; may have different payment methods

• Customer screen displays a “preferred” payment 
method

• Developers created scalar user-defined function

• Called once each time the form gets opened

create function dbo.fnGetPaymentPreference
(@CustomerId int) returns nvarchar(50)

as …



Case Study: Preferred Payment Method

• My task: daily sync of the preferred payment method 

for ~4 million customers to another system

select c.CustomerID,
dbo.fnGetPaymentPreference
(c.CustomerID) PreferredPaymentMethod

from dbo.Customer c;

• (0.74 ms per customer)

• Runs for 48 min 47 sec.



Case Study: Preferred Payment Method

• Re-write as set-based SQL

• UDF consists of five separate SQL statements to 

populate variables



Case Study: Preferred Payment Method

SELECT @PaymentCount1 = COUNT(Q1.ID)

FROM

(SELECT MAX(sub.ID) AS ID

FROM dbo.Subscription sub

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeId

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active'

AND pt.type = 'Credit Card'

GROUP BY sub.PaymentTypeID, sub.ccLastFour) AS
Q1



Case Study: Preferred Payment Method

SELECT @PaymentCount2 = COUNT(Q2.ID)

FROM

(SELECT MAX(sub.ID) AS ID

FROM dbo.Subscription sub

INNER JOIN MMS.dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeId

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active'

AND pt.type <> 'Credit Card'

GROUP BY sub.PaymentTypeID) AS Q2



Case Study: Preferred Payment Method

SELECT @PaymentCount3 =
CASE WHEN (@PaymentCount1 IS NULL)

AND (@PaymentCount2 IS NULL) THEN 0
WHEN (@PaymentCount1 IS NULL)

THEN @PaymentCount2
WHEN (@PaymentCount2 IS NULL)

THEN @PaymentCount1
ELSE @PaymentCount1 + @PaymentCount2

END



Case Study: Preferred Payment Method

SELECT @TotalPaymentCount =

ISNULL(@CCPaymentCount, 0) +

ISNULL(@NonCCPaymentCount, 0);



Case Study: Preferred Payment Method
SELECT @PaymentType = MAX(CASE

WHEN pt.type = 'Credit Card' THEN 'Credit 
Card'

ELSE pt.name
END)

FROM dbo.Subscription sub
INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID
WHERE sub.CustomerId = @CustomerId
AND so.Status = 'Active'
GROUP BY sub.CustomerId



Case Study: Preferred Payment Method

SELECT @PaymentMethod =
CASE WHEN @PaymentCount3 IS NULL THEN
'None'

WHEN @PaymentCount3 = 0 THEN 'None'
WHEN @PaymentCount3 = 1 THEN

@PaymentType
ELSE 'Multiple'

END

RETURN @PaymentMethod



Case Study: Preferred Payment Method
with CCPaymentCount as
(

select Q1.CustomerId, COUNT(Q1.ID) Cnt
FROM

(SELECT sub.CustomerId, MAX(sub.ID) AS ID
FROM dbo.Subscription sub
INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID
WHERE sub.CustomerId = @CustomerId
AND sub.Status = 'Active'
AND pt.type = 'Credit Card'
GROUP BY sub.CustomerId, sub.PaymentTypeID, sub.ccLastFour)

AS Q1
GROUP BY Q1.CustomerId

)



Case Study: Preferred Payment Method
, NonCCPaymentCount as

(

SELECT Q2.CustomerId, COUNT(Q2.ID) Cnt

FROM

(SELECT sub.CustomerId, MAX(sub.ID) AS ID

FROM dbo.Subscription so

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active’ 

AND pt.type <> 'Credit Card'

GROUP BY sub.CustomerId, sub.PaymentTypeID) AS Q2

GROUP BY Q2.CustomerId

)



Case Study: Preferred Payment Method

, TotalPaymentCount as

(

select coalesce(p1.CustomerId, p2.CustomerId) CustomerId,

isnull(p1.Cnt, 0) + isnull(p2.Cnt, 0) Cnt

from CCPaymentCount ccCount

full outer join NonCCPaymentCount nonCcCount

on nonCcCount.CustomerId = ccCount.CustomerId

)



Case Study: Preferred Payment Method

, PaymentType as
(

select sub.CustomerId, MAX(CASE
WHEN pt.type = 'Credit Card' THEN 'Credit Card'
ELSE pt.name
END) TypeName

FROM dbo.Subscription so
INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID
WHERE sub.CustomerId = @CustomerId
AND so.Status = 'Active'
GROUP BY sub.CustomerId

)



Case Study: Preferred Payment Method

, FinalResult as
(

select pc.CustomerId,
case when pc.Cnt = 1 then pt.TypeName
else 'Multiple’
end PaymentType

from TotalPaymentCount pc
inner join PaymentType pt
on pt.CustomerId = pc.CustomerId

)



Case Study: Preferred Payment Method

select c.CustomerId,

isnull(fr.PaymentType, 'None') PaymentType

from dbo.Customer c

left join FinalResult fr

on c.CustomerId = fr.CustomerId;



Case Study: Preferred Payment Type

• Still requires 3 passes through the data, so 

definitely room for improvements on that front

• However … this rewrite now runs in about 3 

seconds (about a 1000x improvement)

• Performance tuning is not always about squeezing 

every bit out of the query …

• It’s about “good enough”



So if sets are good, really big sets are better, right?

• Transaction log impacts

• Long-running transactions and clearing the log

• Log growth

• Log space reservation

• What if DB is restored to point in the middle of the 

operation?

• Splitting up sets is a bit of an art



Other Stuff

• In-Memory OLTP changes things

• aka Hekaton, new in SQL 2014

• If natively compiled

• Loops with data access perform well

• Beware of limitations



Key Take-Aways

• Cursors are usually inefficient

• If necessary, declare as fast_forward read_only

• Still necessary for lots of admin functionality

• Pre-2012, still best way to do running totals, etc.

• Triangle joins are evil



Key Take-Aways

• Avoid most UDFs

• Scalar and multi-statement TVFs with data access 

tend to perform poorly

• CLR with data access tends to perform poorly

• Inline TVFs generally optimize well and tend to 

perform nicely



Key Take-Aways

• Embrace row_number(): It is much more useful 

than just for counting rows

• Embrace windowing functions

• Embrace apply

• Easy way to improve many scalar UDFs

• May need to split up very large sets



Thank You

This presentation and supporting materials can be 
found at www.tf3604.com/sets.

Slide deck

Scripts

Sample database

brian@tf3604.com • @tf3604

http://www.tf3604.com/sets

