
Real-World PowerShell for

SQL Administration

Brian Hansen

brian@tf3604.com

@tf3604

Welcome to SQL Saturday

• Enjoy this day of learning

• Be sure to visit and thank the sponsors

• Be sure to thank the organizer and volunteers

• Take time to NETWORK with others. That’s

what this is really all about!

• Act professionally and treat others with

respect (like this was a work environment)

Agenda

• “Gotchas”

• Tips

• PowerShell and .NET

• Scripts

• Gotchas
• Tips

• PowerShell and .NET

• Scripts

“Gotchas”: Providers

• Be in the right provider

• PowerShell has many virtual drives and folder

structures

• What is the default provider in SQL Agent?

It is SQLSERVER:\

Set-Location c:;

“Gotchas”: Silent Failures

• Silent failures (non-terminating errors)

“Gotchas”: Silent Failures

• How to fix?

$ErrorActionPreference = "Stop";

• But what if we really want to ignore an error?

try { ... }

catch { ... }

finally { ... }

“Gotchas”: Silent Failures

• More about try … catch … finally
try { $connection.Open(); }

catch [System.Data.SqlClient.SqlException]

{

$except = $_.Exception;

$errorMessage = $except.Message;

$errorNumber = $except.Number;

}

“Gotchas”: Agent compatibility

• Jobs running in agent must comply with the

proper version of PowerShell

• SQL 2008 to 2012 → PowerShell 2.0

• SQL 2014 to 2019 → PowerShell 5.1

• Cannot use PowerShell features beyond the

loaded version!

“Gotchas”: Agent compatibility

• What can go wrong with this?
$files = Get-ChildItem “c:\temp";

$mostRecent = ($files |

Sort-Object $_.LastWriteTime -Descending)[0];

• What if c:\temp is empty?

• What if c:\temp has one file?

• Will fail in PS 2.0 ($mostRecent is of type FileInfo, not
FileInfo[]) Unable to index into an object of type
System.IO.FileInfo.

• Will work in PS 5.1 (still of type FileInfo, but PS allows indexing)

“Gotchas”: PS Features Not in Agent

$file = New-Object System.IO.FileInfo("C:\temp\data.txt");

Write-Output "The file date is $($file.LastWriteTime)";

• This works in Standard PowerShell

• But not in SQL PS (either 2.0 or 5.1)

Unable to start execution of step 1 (reason: line(2):
Syntax error). The step failed.

• This works:
Write-Output ("The file date is " + $file.LastWriteTime);

“Gotchas”: Getting just files (or folders)

Get-ChildItem "c:\data“ -Recurse;

• Returns both files and folders

• What if we just want files?

... | Where-Object { -not $_.PSIsContainer };

• Or just folders?

... | Where-Object { $_.PSIsContainer };

“Gotchas”: Dot-sourcing

• Imagine a PS script with initialization features

(variables, functions), and we call that script.

C:\data\Initialize.ps1;

• Then try to access these features

Do-Something;

Do-Something : The term 'Do-Something' is
not recognized as the name of a cmdlet,
function, script file…

“Gotchas”: Dot-sourcing

• The script is loaded into a subshell, which is

closed when the script is done

• We need to “dot-source” (prefix the call to

the script file is a period and space)
. C:\data\Initialize.ps1;

• This causes the script to be loaded within the

scope of the current shell

“Gotchas”: Syntax oddities

• What do these mean?

• But this does not generate an error. Why?
if ($x = 4) { Write-Output "True"; }

$x = 3;

if ($x > 0) { Write-Output "True"; }

Operator Meaning Other languages

-eq Equality comparison = or ==

-ne Not-equals comparison <> or !=

-gt Greater-than comparison >

“Gotchas”: Syntax oddities

• What is this checking for?

• if (!$?) { Write-Output "Huh?"; }

• Last command was unsuccessful

• $? means last command was successful

• !$? is the same as -not $?

“Gotchas”: Syntax oddities

• What does the ampersand do here?

& "c:\utils\sleep.exe";

• Treats the string as a command rather than

just a string object.
& "c:\utils\sleep.exe";

• Executes sleep.exe

"c:\utils\sleep.exe";

• Returns the string “c:\utils\sleep.exe”

“Gotchas”: Syntax oddities

• What data type is the variable?

$variable = @{};

• Hash table

• To add records:
$variable.Add("key1", "value1");

$variable.key2 = "value2";

• Or initialize as
$variable = @{"key1" = "value1"; "key2" = "value2"};

• Gotchas

• Tips
• PowerShell and .NET

• Scripts

Tips: Customizable Variables

• Place customizable variables at top of script

• Even if not referenced until much later.
set-location c:;

$ErrorActionPreference = "Stop";

$backupPath = "\\FileServer\SQL\LogBackups";

$localPath = "S:\SQL\Backups";

$filePattern = "*.bak";

$databaseName = "OurDatabase";

$logFile = "\\FileServer\AppLogs\BackupLog.txt";

Tips: Aliases

• What is this code doing?

gci "c:\data"|?{$_.LastWriteTime -gt
"2019-01-01"}|%{$x+=','+$_.Name};

• Aliases in PowerShell

• gci = Get-ChildItem

• ? = Where-Object (or where)

• % = ForEach-Object (or foreach)

Tips: Aliases

gci "c:\data"|?{$_.LastWriteTime -gt
"2019-01-01"}|%{$x+=','+$_.Name};

Get-ChildItem "c:\data" | Where-Object {
$_.LastWriteTime -gt "2019-01-01" } |
ForEach-Object { $x += ',' + $_.Name };

Tips: Aliases

Get-ChildItem "c:\data" | Where-Object { $_.LastWriteTime
-gt "2019-01-01" } | ForEach-Object { $x += ',' + $_.Name
};

Get-ChildItem "c:\data" | `

Where-Object { $_.LastWriteTime -gt "2019-01-01" } | `

ForEach-Object { $x += ',' + $_.Name };

Tips: Debugging

• PowerShell ISE or Visual Studio Code is your
friend

• F8 to run highlighted text (or current line)

• F5 or Debug → Run/Continue
• Always starts from beginning of script

• Goes until done or hits breakpoint

• F10 or Debug → Step Over to run next statement
• Also F11 to Step Into and Shift-F11 to Step Out

• F9 to toggle breakpoint

Tips: Debugging

• Sometimes the script works fine in ISE / VS

Code but not in SQL Agent

• Logging (yeah, it stinks, but …)

Write-LogMessage -LogFileName $logName
-Message "About to do something.";

Do-Something;

Write-LogMessage -LogFileName $logName
-Message "Successfully did something.";

Note: custom

function; see scripts

Tips: Creating file names

• Suppose we have the following script

Configure these variables as appropriate

$folderName = "c:\data\";

End of configuration variables

Do lots of other stuff, then:

$fileName = "OurDatabase.bak";

$fullFileName = $folderName + $fileName;

Tips: Creating file names

• Some time later, we need to change the folder

Configure these variables as appropriate

$folderName = "c:\sql\backups";

End of configuration variables

Do lots of other stuff, then:

$fileName = "OurDatabase.bak";

$fullFileName = $folderName + $fileName;

Tips: Creating file names

• Use Path.Combine instead

Configure these variables as appropriate

$folderName = "c:\sql\backups";

End of configuration variables

Do lots of other stuff, then:

$fileName = "OurDatabase.bak";

$fullFileName = [System.IO.Path]::Combine($folderName, $fileName);

• Gotchas

• Tips

• PowerShell and .NET
• Scripts

PowerShell and .NET

• Knowing a bit of .NET can be really useful

• .NET integrates quite nicely into PS

• Can help to read PS scripts that use .NET

• Exercise great control doing data access

• And file system operations

• (Though PS wraps file system stuff quite nicely)

PowerShell and .NET: Data Access

• Common data access objects: SqlConnection
• Create from connection string
• Or use SqlConnectionStringBuilder

$sb = New-Object
System.Data.SqlClient.SqlConnectionStringBuilder;

$sb["Data Source"] = "server\instance";
$sb["Initial Catalog"] = "AdventureWorks2014";
$sb["Integrated Security"] = $true;

$connection = New-Object
System.Data.SqlClient.SqlConnection($sb.ToString());

$connection.Open();

PowerShell and .NET: Data Access

• Be sure to close the connection
try

{

$connection.Open();

#Use the connection

}

finally

{

$connection.Close();

}

PowerShell and .NET: Data Access

• Common data access objects: SqlCommand

$sql = "update dbo.AppUser set name = 'Jane' where ID = 4;";
try
{

$command = New-Object
System.Data.SqlClient.SqlCommand($sql, $connection);

$command.CommandTimeout = 3600;

[void]$command.ExecuteNonQuery();

}
finally
{

$command.Dispose();
}

PowerShell and .NET: Data Access

• SqlCommand parameters

$sql = "update dbo.AppUser set name = @name where ID = @appUserId;";

try
{

$command = New-Object System.Data.SqlClient.command($sql, $sqlConnection);
$command.CommandTimeout = 3600;

$command.Parameters.Add("@name", "Jane");
$command.Parameters.Add("@appUserId", 4);

[void]$command.ExecuteNonQuery();
}
finally
{

$command.Dispose();
}

PowerShell and .NET: Data Access

• SqlCommand common methods

• ExecuteNonQuery (useful for update, insert,
delete statements)

• ExecuteScalar (returns the value of the first
column of the first row)

• ExecuteReader (creates SqlDataReader
object)

• ExecuteXmlReader (creates XmlReader
object)

PowerShell and .NET: Data Access

• SqlCommand and resultsets
$sql = "select * from Sales.SalesPerson;";
$table = New-Object System.Data.DataTable;
try
{

$command = New-Object System.Data.SqlClient.SqlCommand($sql, $connection);
try
{

$adapter = New-Object System.Data.SqlClient.SqlDataAdapter($command);

[void]$adapter.Fill($table);
}
finally
{

$adapter.Dispose();
}

}
finally
{

$command.Dispose();
}
Use data in $table

For multiple result sets, use:
$dataSet = New-Object System.Data.DataSet;

And reference $dataSet

here

PowerShell and .NET: Data Access

• Accessing resultset data

foreach ($table in $dataSet.Tables)
{

foreach ($row in $table.Rows)
{

$businessEntityId = $row["BusinessEntityID"];
$bonus = $row["Bonus"];
$salesYtd = $row["SalesYTD"];
Use row data here

}
}

PowerShell and .NET: Data Access

• Accessing resultset data

foreach ($table in $dataSet.Tables)
{

foreach ($row in $table.Rows)
{
$businessEntityId = $row.BusinessEntityID;

$bonus = $row.Bonus;
$salesYtd = $row.SalesYTD;
Use row data here

}
}

NULL Values in .NET

• PowerShell and .NET null value is $null

• SQL null value is [System.DBNull]::Value

• Not the same!

• Be sure to use SQL null when setting

parameters or checking column values

• Gotchas

• Tips

• PowerShell and .NET

• Scripts (Usage Scenarios)

Real-World Scripts: Copying files

• Very useful to copy files around (especially

backups)

• Make sure agent account has sufficient rights

• Probably at least “Modify” access

• Many options in PowerShell to copy files

Real-World Scripts: Copying files

• Copy-Item

• Built in to PowerShell

• Very generic (will copy more than files)

• Limited flexibility

Real-World Scripts: Copying files

• FileInfo.CopyTo

• Also not much flexibility

$file = New-Object System.IO.FileInfo
("c:\temp\original.log");

$file.CopyTo("d:\temp\copy.txt", $true);

• File.Copy
[System.IO.File]::Copy("c:\temp\original.log",
"d:\temp\copy.txt", $true);

Real-World Scripts: Copying files

• robocopy
• Adds robustness to copy process (lots of switches)

• Always use /R (retry) and /W (wait) switches

• Consider /NP (no progress) and /Z (restartability)

• Check $LastExitCode greater than 7 for error

• Can be slow for very large files

robocopy c:\temp d:\temp ssis.log /R:3 /W:30;
if ($LastExitCode -gt 7)
{

throw "Error using ROBOCOPY.";
}

Real-World Scripts: Copying files

• Custom copying scripts

• Note logic to cleanup old backups

Real-World Scripts: Reaching Across

Servers
• Light-weight and maintainable code to

execute SQL across servers

• Easier to maintain than SSIS package

• Avoids linked server issues

• Presumes agent account has rights on remote

system

• Examples: start a job, run a stored procedure,

backup Express Edition

• Gotchas

• Tips

• PowerShell and .NET

• Scripts (Real-World Scripts)

Real-World Scripts

• See the Initialize.ps1 script

• Invoke using dot-sourcing
• Consider prefixing with your organization name

(XYZ_Initialize.ps1)

• Intended as a source of ideas, not necessarily to
use as-is

• Lots of assumptions
• only one backup per file

• backups not split into multiple files

• certain naming conventions for backup files, etc.

My Common Usage Job Step

set-location c:\;
. \\FileServer\Share\Initialize.ps1;

Backup-Database `
-InstanceName "SQLHost\oltp" `
-DatabaseList "ProdDatabase" `
-BackupPath "s:\SQL\OLTP\Backup" `
-AppendInstanceToBackupPath $false `
-UseCompression $true `
-FileExtension "bak";

Wrap-Up

Wrap-Up: Summary

• PowerShell is a practical, useful way to

automate SQL administration.

• What we’ve covered today is only the

beginning.

• The power of PowerShell lets us tackle a wide

variety of tasks

Wrap-Up: How about you?

• What other tasks do you accomplish via

PowerShell?

Thank You

• This presentation and supporting materials
can be found at
www.tf3604.com/poshadmin.

• Slide deck

• Scripts

brian@tf3604.com• @tf3604

http://www.tf3604.com/poshadmin

