Real-World PowerShell tor

SQL Administration
B H %PASS
b?ig?\@ﬁcgzgz.(:()m < 2 SQLSATU RDAY

@ﬂ:3604 VIRTUAL CHATTANOOGA | JUN 27 2020

Welcome to SQL Saturday

Enjoy this day of learning
Be sure to visit and thank the sponsors
Be sure to thank the organizer and volunteers

Take time to NETWORK with others. That's
what this is really all about!

AcTt professionally and treat others with
respect (like this was a work environment)

<2

Agendad

« “Gotchas”

* Tips

 PowerShell and .NET
o Scripfts

<D

o« Gotchas

<D

“Gotchas'’: Providers

* Be In the right provider

 PowerShell has many virtual drives and folder
structures

PS5 C:\Users\hansenx

PS5 SQLSERVER:\sql%ludmilla‘\SQL2817\Databases\Manufacturing:

« Whatis the default provider in SQL Agent?e
It is SQLSERVER:\

Set-Location c:;

<2

“Gotchas’: Silent Failures

« Silent failures (non-terminating errors)

& 03/28/20193:4219... 3

Message
Executed as user:© & = cmpsesgees . The job script encountered the following emors. These emors

did not stop the script; A job step received an emor at line 17 in a PowerShell script. The
comesponding line is Remove-tem %d fullname force °. Comect the script and reschedule
the job. The emor information retumed by PowerShell is: "Access to the path is denied. * A job step
received an emor at line 17in a Powershell script. The comesponding line is Remove-tem

&d fullname force . Comect the scrpt and reschedule the job. The emor information retumed by
PowerShell is: "Access to the path is denied. . Process BExit Code 0. The step succeeded.

<2

“Gotchas’: Silent Failures

e How 1o fixe

$ErrorActionPreference "Stop"';
« But what if we really want to ignore an errore
try { ... }
catch { ... }
finally { ... }

<2

“Gotchas’: Silent Failures

 More about try ... catch ... finally
try { $connection.Open(); }
catch [System.Data.SqglClient.SqlException
{
$except = $_.Exception;
$errorMessage = $except.Message;
$errorNumber = $except.Number;

<2

"Gotchas’™: Agent compatibllity

Jobs runnmg IN agent must comply with the
proper version of PowerShell

SQL 2008 to 2012 - PowerShell 2.0
SQL 2014 to 2019 - PowerShell 5.7

Cannot use PowerShell features beyond the
loaded version!

<2

"Gotchas’™: Agent compatibllity

 What can go wrong with thise

$files = Get-ChildIitem “c:\temp";
$mostRecent ($files
Sort-Object $_.LastwriteTime -Descending) 0];

« Whatif c:\temp is emptye
 Whatif c:\temp has one file¢

o Will fail in PS 2.0 ($mostrecent Is Of type Filelnfo, not
FileInfo[]) Unable to index into an object of type
System.|O.FileInfo.

 Will work in PS 5.1 (still of type FileInfo, but PS allows indexing)

<2

"Gotchas’: PS Features Not in Agent

$f1le = New-Object System.IO.FileInfo("C:\temp\data.txt");
Write-output "The file date is $($file.LastWwriteTime)";

 This works In Standard PowerShell

The Tile date 15 03/28/2019 09:46:36

« But notfin SQL PS (either 2.0 or 5.1)

Unable 1o start execution of step 1 (reason: line(2):
Syntax error). The step failed.

 This works:
write-output ("The file date is " $file.LastwriteTime);

<2

"Gotchas”: Getting just files (or folders)

Get-Chi

IldItem "c:\data”™ -Recurse;

« Returns both files and folders

What if

W

we just want files?
nere-Object { $_.PSIsContainer };

* QOrjust:

‘olders?e

Where-0Object { $_.PSIsContainer };

<2

"Gotchas”: Dot-sourcing

« Imagine a PS script with initialization features
(variables, functions), and we call that scripf.
C:\data\Initialize.psl;

* Then try fo access these features
Do-Something;

Do-Something : The term 'Do-Something' 1s

not recognized as the name of a cmdlet,
function, script file..

<2

"Gotchas™: Dot-sourcing

« The scriptis loaded intfo a subshell, which is
closed when the script iIs done

« We need to “dot-source” (prefix the call to

the scripft file is a period and space)
. C:\data\Initialize.psl;

* This causes the script to be loaded within the
scope of the current shell

<2

"Gotchas™: Syntax oddities

e What do these mean@e
Operator | Meaning |Otherlanguages

~€q Equality comparison = or ==
-ne Not-equals comparison <>orl=
-gt Greater-than comparison >

« Buft this does not generate an error. Whye
if ($x = 4) { write-output "True"; }
$x = 3;

if ($x > 0) { write-output "True"; }
<2

"Gotchas™: Syntax oddities

What is this checking fore
if (1$?7) { write-Ooutput "Huh?"; }
Last command was unsuccessful

$? means last command was successful
$7?is the same as $7?

<2

"Gotchas™: Syntax oddities

What does the ampersand do heree
"c:\utils\sleep.exe";

Treats the string as a command rather than

just a string object.
"c:\utils\sleep.exe";
Executes sleep.exe
"c:\utils\sleep.exe";
Returns the string “c:\utils\sleep.exe”

<2

"Gotchas™: Syntax oddities

 What data type is the variable?
$variable = @{};

« Hash table

e To addrecords:
$variable.Add("keyl", "valuel™);

$variable.key?2 "value2";
* Orinitialize as
$variable = @{"keyl" "valuel”; "key2" "value2"};

<2

Gotchas

* TIPS

PowerShell and .NET
Scripts

<D

Tips: Customizable Variables

* Place customizable variables at fop of scripf

« Even if not referenced until much later.
set-location c:;
$ErrorActionPreference "Stop"';

$backupPath "\\F1leServer\sqQL\LogBackups";
$localPath "S:\SQL\Backups"';

$filePattern = "*.bak";

$databaseName "OurDatabase";

$TogFile = "\\FileServer\AppLogs\BackupLog.txt";

<2

Tips: Aliases

 Whatis this code doinge
gci "c:\data" | ?{$_.LastwriteTime
"2019-01-01"} | %{Sx+=", "+$_.Name};
« Aliases in PowerShell
« gc1=Get-ChildItem
« ?=Where-0Object (or where)
« % =ForEach-0Object (or foreach)

<2

Tips: Aliases

gcl "c:\data" |7?{$_
"2019-01-01"} |9%{$x

$_.LastwriteTime
ForEach-Object { $x

¥

Get-ChildItem "c:\data" | where-Object {

LastWriteTime
"'+ $_ . Name};

"2019 01-01" }
o $_.Name };

<2

Tips: Aliases

Get-ChildItem "c:\data"

Where-0Object { $_.LastwriteTime

"2019-01-01" 3} ForEach-oObject { $x ! $_.Name

¥

}s

Get-ChildItem "c:\data"

Where-0Object { $_.LastwriteTime "2019-01-01" }

ForEach-object { $x

) $_.Name };:

<2

Tips: Debugging

 PowerShell ISE or Visual Studio Code is your
friend
« F8 to run highlighted text (or current line)
 F5or Debug - Run/Continue

Always starts from beginning of script
Goes until done or hits breakpoint

 F10 or Debug = Step Over to run next statement
Also F11 to Step Into and Shift-F11 to Step Out

« [9 to toggle breakpoint
<D

Tips: Debugging

« Sometimes the script works fine in ISE / VS

Code but not in SQL Agen‘r Note: custom
. Logging (yeOquncﬂon; see scripfts
Write-LogMessage -LogFileName $logName

-Message "About to do something.";
Do-Something;

Write-LogMessage -LogFileName $logName
-Message ''Successfully did something.";

<2

Tips: Creating file names

TullFileName = c:\data\OurDatabase. bak

« Suppose we have the following script

Configure these variables as appropriate
$folderName = "c:\data\";
End of configuration variables

Do lots of other stuff, then:
$fileName "OourbDatabase.bak";

$FfulT1FiTeName $folderName $fileName; ¢S

Tips: Creating file names

TullFileName = c:\sgl\backupsOourDatabase.bak

« Some time later, we need to change the folder

Configure these variables as appropriate
$folderName = "c:\sql\backups";
End of configuration variables

Do lots of other stuff, then:
$fiTleName "OurDatabase.bak";
$FulTFileName $folderName $fiTleName:

<2

Tips: Creating file names

TullFileName = c:\sgl\backupshourDatabase. bak

¢« Use Path.Combine instead

Configure these variables as appropriate
$folderName = "c:\sql\backups";
End of configuration variables

Do lots of other stuff, then:
$f1ileName "Ourbatabase.bak";
$fullFileName System.IO.Path Combine($folderNname

$fileName);

<2

« PowerShell and .NET

<D

PowerShell and .NET

« Knowing a bit of .NET can be really useful
« .NET integrates quite nicely into PS
 Can help to read PS scripts that use .NET
» Exercise great confrol doing data access

* And file system operations
(Though PS wraps file system stuff quite nicely)

<2

PowerShell and .NET: Data Access

« Common data access objects: SqlConnection
« Create from connection string
« Oruse SqlConnectionStringBuilder

$sb = New-Object _ _ _ _
System.Data.SqlClient.SqlConnectionStringBuilder;

$sb|"Data Source" "server\instance";
$sb["Initial Catalog" "Adventureworks2014";
$sb["Integrated Security" $true;

$connection = New-Object _ _
System.Data.SqlClient.SqlConnection($sb.ToString());

$connection.open();

<2

PowerShell and .NET: Data Access

e Be sure to close the connection
try
{

$connection.open();
#Use the connection

}
finally
{
$connection.Close();
}

<2

PowerShell and .NET: Data Access

« Common data access objects: SglCommand

$sql "update dbo.AppUser set name = 'Jane' where ID = 4;";
try
{

$command = New-Object

System.Data.SqlClient.SqlCommand($sql, $connection);
$command .CommandTimeout 3600;

void]| $command. ExecuteNonQuery();

}
finally
{
$command.Dispose();
}

<2

PowerShell and .NET: Data Access

« SqglCommand parameters

$sql "update dbo.AppUser set name = @name where ID = @appUserid;";

try

{
$command = New-Object System.Data.SqlClient.command($sql, $sglConnection);

$command . CommandTimeout 3600;

$command.Parameters.Add("@name", "Jane");
$command.Parameters.Add("@appUserid", 4);

void | $command. ExecuteNonQuery(Q);

}
finally
{
$command.Dispose();
}

<2

PowerShell and .NET: Data Access

e SqglCommand common methods

ExecuteNonQuery (useful for update, insert,

delete statements)

ExecuteScalar (returns the value of the first
column of the first row)

ExecuteReader (creates SglDataReader
object)

ExecuteXmlReader (creates XmlReader
object)

<D

PowerShell and .NET: Data Access

For multiple result sets, use:

¢ Sq-l Command Gnd reSUH-SG $dataset = New-Object System.Data.DataSet;

$sgl = "select * from Sales.SalesPerson;";
$table = New-Object System.Data.DataTable;
try
{
$command = New-Object System.Data.SqlClient.SqlCommand($sql, $connection);
try
{
$adapter = New-Object System.Data.SqlClient.SqlDbataAdapter($command) ;
[void]$adapter.Fill1($table);
}
finally
{ | _ And reference sdataset
$adapter.Dispose();
} here
}
finally
{
$command .Dispose();
}

Use data in $table < >

PowerShell and .NET: Data Access

« Accessing resultset data

foreach ($table in $dataset.Tables)

{
foreach ($row in $table.Rows)
{
$businesseEntityId = $row["BusinesseEntityID"|;
$bonus $row|"Bonus";
$salesytd $row["salesYyTD" |;
Use row data here
}
}

<2

PowerShell and .NET: Data Access

« Accessing resultset data

foreach ($table in $dataset.Tables)

{
foreach ($row in $table.Rows)
{
$businessentityId = $row.BusinessEntityID;
$bonus $row.Bonus:
$salesytd $row.SalesYTD;
Use row data here
}
}

<2

NULL Values in .NET

PowerShell and .NET null value is $null
SQL null value is [System.DBNull]: :Value

Not the samel

Be sure to use SQL null when setting
parameters or checking column values

<2

 Scripts (Usage Scenarios)

<D

Real-World Scripts: Copying files

Very useful to copy files around (especially

backups)

Make sure agent account has sufficient rights

Probab

vy at least “Modify” access

Many op

ons In PowerShell to copy files

<2

Real-World Scripts: Copying files

« Copy-ltem
e Built in to PowerShell
* Very generic (will copy more than files)
« Limited flexibility

<2

Real-World Scripts: Copying files

» Fileinfo.CopyTo
« Also not much flexibility
$file = New-Object System.IO.FileInfo
("c:\temp\original.log");
$file.CopyTo("d:\temp\copy.txt", $true);
+ File.Copy

System.IO.Filel::Copy('c:\temp\original.log"
"d:\temp\copy.txt", $true);

<2

Real-World Scripts: Copying files

robocopy

 Adds robustness to copy process (lots of switches)
« Always use /R (retry) and /W (wait) switches

« Consider /NP (no progress) and /Z (restartability)

« Check $LastExitCode greater than 7 for error

« Can be slow for very large files

robocopy c:\temp d:\temp ssis.log /R:3 /w:30;
if ($LastExitCode 7)
{

¥

throw "Error using ROBOCOPY.";

<2

Real-World Scripts: Copying files

« Custom copying scripts
Note logic to cleanup old backups

<D

Real-World Scripts: Reaching Across

Servers

* Light-weight and maintainable code to
execute SQL across servers

Easier to maintain than SSIS package
Avoids linked server issues

Presumes agent account has rights on remote
system

Examples: start a job, run a stored procedure,
backup Express Edition

<2

 Scripts (Real-World Scripts)

<D

Real-World Scripfts

« See the Initialize.ps1 script

* |nvoke using dot-sourcing

« Consider prefixing with your organization name
(XYZ_Initialize.psT)

* Infended as a source of ideas, not necessarily to
use as-is

« Lots of assumptions
only one backup per file
backups not split into multiple files
certain naming conventions for backup files, etc.

<2

My Common Usage Job Step

set-location c:\;
\\F1leServer\Share\Initialize.psl;

Backup-Database
-InstanceName "SQLHost\oltp"
-DatabaseList "Prodbatabase"
-BackupPath "s:\SQL\OLTP\Backup"
-AppendInstanceToBackupPath $false
-UseCompression $true
-F1leExtension "bak';

~N

<2

Wrap-Up

<D

Wrap-Up: Summary

 PowerShell is a practical, useful way to
automate SQL administration.

« What we've covered today is only the
beginning.
The power of PowerShell lets us tackle a wide
variety of tasks

<2

Wrap-Up: How about youe

 What other tasks do you accomplish via
PowerShelle

<D

Thank You

» This presentation and supporting materials
can be found at
www.113604.com/poshadmin.

« Slide deck

o Scripts

brian@tt3604.com ¢ @1f3604

<D

http://www.tf3604.com/poshadmin

