
Get Your Optimizer to Give

up All Its Secrets

Brian Hansen

brian@tf3604.com

@tf3604

Our Sponsors

Local User Groups
LA Data Platform

3rd Wednesday of every month

https://ladataplatform.pass.org/

Los Angeles User Group Orange County User Group

3rd Thursday of each odd month 2nd Thursday of every month

https://sqlla.pass.org/ https://bigpass.pass.org/

San Diego User Group Los Angeles - Korean

1st and 3rd Thursday of every month Every other Tuesday

https://www.meetup.com/sdsqlug/

https://www.meetup.com/sdsqlbig/

https://sqlangeles.pass.org/

https://ladataplatform.pass.org/
https://sqlla.pass.org/
https://bigpass.pass.org/
https://www.meetup.com/sdsqlug/
https://www.meetup.com/sdsqlbig/
https://sqlangeles.pass.org/

PASS Summit 2020 - Virtual

PASS Summit 2020 – Discount Code

• LA User Group: LGDISBEKB

• LA Data Platform: LGDISEI2J

• South Florida SQL Server User Group:

LGDISSC75

Welcome to SQL Saturday

• Enjoy this day of learning

• Be sure to visit and thank the sponsors

• Be sure to thank the organizer and volunteers

• Take time to NETWORK with others. That’s

what this is really all about!

• Act professionally and treat others with

respect (like this was a work environment)

About This Session

• What this session is not

• An end-to-end optimizer session

• A performance tuning session

• Goals of this session

• Additional understanding of SQL Server

internals

• Deeper understanding: write better queries!

• Provide additional skills for performance tuning

Agenda

• Background:

• Logical processing order

• Physical processing considerations

• Executing a query:

• Parse, bind, transform, optimize, execute

• Heuristics, transformation rules, parse trees,
memos

• Limitations & DMVs

This Is Only the Foundation

• The materials we are covering here will only
skim the surface of what is possible.

• Understanding optimizer internals takes time
and study.

• Many features you run across have minimal
available information out there.

• Don’t get frustrated … just keep on diving in
(if this is interesting to you)!

Logical Processing Order

• Defines the sequence in which SQL elements are
logically processed

• Forms the starting basis for parsing the submitted
query

• Usually discussed from the perspective of a SELECT
query; similar for UPDATE / DELETE / INSERT /
MERGE

• Declarative vs procedural programming

• “What” vs “How”

Logical Processing Order

• FROM

• ON

• JOIN / APPLY

• PIVOT / UNPIVOT

• WHERE

• GROUP BY

• WITH CUBE / ROLLUP

• HAVING

• SELECT

• DISTINCT

• ORDER BY

• TOP

• OFFSET … FETCH

For more details, see this and
subsequent articles from Itzik Ben-Gan

http://sqlmag.com/sql-server/logical-query-processing-what-it-and-what-it-means-you

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Table Columns Rows

OrderHeader 3 301,811

OrderDetail 5 603,133

Customer 6 70,132

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId
inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 1: FROM

• OrderHeader joined to OrderDetail

• Perform Cartesian join

• Result is 182,032,173,863 rows / 8 columns

• This is result table R1

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 2: FROM

• R1 joined to Customer (Cartesian join)

• Result is 12,766,280,417,359,916 rows / 14

columns

• This is result table R2

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 2: ON

• Find rows in R2 where OrderId = OrderId

• Result is 42,298,923,556 rows / 14 columns

• This is result table R3

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 4: ON

• Find rows in R3 where CustomerId =

CustomerId

• Result is 603,133 rows / 14 columns

• This is result table R4

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 5: WHERE

• Find rows in R4 where State = 'TN'

• Result is 96,317 rows / 14 columns

• This is result table R5

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 6: GROUP BY

• Arrange rows into groups by ProductId

• Within each group compute

SUM(Quantity)

• Result is 7,514 rows / 2 columns

• This is result table R6 (ProductId,

SUM(Quantity))
• Only these 2 columns are available in downstream steps

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 7: HAVING

• Find rows in R6 where SUM(Quantity) >=

20

• Result is 3,492 rows / 2 columns

• This is result table R7

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 8: SELECT

• Evaluate expressions in the select list
• ProductId → ProductId

• SUM(Quantity) – 20 → ExcessOrders

• Result is 3,492 rows / 2 columns

• This is result table R8

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 9: ORDER BY

• Sort R8 by ProductId

• Result is 3,492 rows / 2 columns

• This is result table R9

select top 5 od.ProductId, sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh

inner join dbo.OrderDetail od on oh.OrderId = od.OrderId

inner join dbo.Customer cust on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Step 10: TOP

• Keep the first 5 rows in R9

• Remaining rows get discarded

• Result is 5 rows / 2 columns

• This is result table R10

• Logical processing is complete

How SQL Server Sees the Query

from dbo.OrderHeader oh

inner join dbo.OrderDetail od

inner join dbo.Customer cust

on oh.OrderId = od.OrderId

on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

select od.ProductId, sum(od.Quantity) - 20 ExcessOrders

order by od.ProductId

top 5;

Logical Operators

• Get

• Join

• ⋈ inner

• ⟕⟖⟗ outer

• × Cartesian

• ⋉⋊ semi*

• ▷ anti-semi*

• Apply

• Set Operators

• ∪ union

• ∩ intersection

• ∖ except

• σ Select (SQL: where)

• π Project (SQL: select)

• G Aggregate

1
*

Join Type Comparison

Join Type Condition Left

rows

Right

rows

Inner For each predicate match, output left row +

right row

0+ 0+

Left outer Same as inner, but if no predicate match,

output left row + NULL placeholders for right

row

1+ 0+

Full outer Same as left, but if no predicate match in right,

output NULL placeholders for left table + right

row

1+ 1+

Cartesian /

cross (m × n)

Match each row in left with each row in right

(no concept of predicate)

n m

Left semi Output left row once if predicate match 0 or 1 0

Left anti-semi Output left row once if no predicate match 0 or 1 0

Physical Operators: Logical “get”

• Scan

• Seek

• Lookups

• Heap vs clustered index vs non-clustered

index

• Ordered vs unordered

• Forward vs backward

Physical Operators: Other

• Join

• Merge

• Nested loops

• Hash

• Aggregate

• Stream aggregate

• Hash aggregate

• Select

• Filter

Process of Executing a Query

• Parsing and binding

• Optimization

• Execution

Process of Executing a Query - Graphical

Parser/
Algebrizer

Various Trees

Group Option x.0 Option x.1

5.x Join 1.0 ⋈ 3.0

4.x Join 2.0 ⋈ 3.0 Join 0.0 ⋈ 5.1

3.x Get Customer

2.x Join 0.0 ⋈ 1.0

1.x Get OrderHeader

0.x Get OrderDetail

Optimizer

select top 5 od.ProductId,
sum(od.Quantity) - 20 ExcessOrders

from dbo.OrderHeader oh
inner join dbo.OrderDetail od
on oh.OrderId = od.OrderId
inner join dbo.Customer cust
on oh.CustomerId = cust.CustomerID

where cust.State = 'CA'

group by od.ProductId

having sum(od.Quantity) >= 20

order by od.ProductId;

Ex
ec

u
ti

o
n

En
gi

n
e

O
p

ti
m

iz
e

r

Optimizer

Parsing and Binding (1 of 3)

• Algebrizer (the “normalizer” in SQL 2000)
• Parser: validate syntactical correctness

• Build initial parse tree

• Identify constants

2

selekt col1
form objA
wear col2 = 1
orderby col3

Parsing and Binding (2 of 3)

• Expand views

select c.CustomerID, c.FirstName, c.LastName, oh.OrderDate
from CorpDB.dbo.ImportantCustomers c
inner join CorpDB.dbo.OrderHeader oh on oh.CustomerId = c.CustomerId
where c.LastName = 'Hansen';

select c.CustomerID, c.FirstName, c.LastName, oh.OrderDate
from
(

select c.CustomerId, c.FirstName, c.LastName, c.State
from CorpDB.dbo.Customer c

where c.State = 'MO')
) c
inner join CorpDB.dbo.OrderHeader oh on oh.CustomerId = c.CustomerId
where c.LastName = 'Hansen';

Parsing and Binding (3 of 3)

• Binding

• Metadata discovery / name resolution / permissions

• Data type resolution (i.e., UNION)
select 1 union all select 'Some text';

Conversion failed when converting the varchar value 'Some text' to data type
int.

• Aggregate binding
select LastName, CustomerID, count(*) Nbr from Customer group
by LastName;

Column 'Customer.CustomerID' is invalid in the select list because
it is not contained in either an aggregate function or the GROUP BY
clause.

Parse Trees*

• Internal representation of query operation

• Nodes may be logical or physical operators

• 0 to infinity inputs, 1 output

• SQL Server will output parse trees at various

phases of optimization

• A variety of trace flags will trigger output

* Or query trees, or relational trees

Example Parse Tree

select top 5
od.ProductId,
sum(od.Quantity) - 20 ExcessOrders

from CorpDB.dbo.OrderHeader oh
inner join CorpDB.dbo.OrderDetail od
on oh.OrderId = od.OrderId
inner join CorpDB.dbo.Customer cust
on oh.CustomerId = cust.CustomerID

where cust.State = 'MO'
group by od.ProductId
having sum(od.Quantity) >= 20
order by od.ProductId;

Get
OrderHeader (oh)

Get
OrderDetail (od)

Cartesian
Join

Get
Customer (c)

Cartesian
Join

Select
c.State = CA

GbAgg
On: ProductId

Calc: sum(od.Quantity)

Project
ProductId, ExcessOrders
= sum(od.Quantity) - 20

Order By
ProductId

Top
5

Select
Sum(od.Quantity) >= 20

Inner Join
oh.OrderId = od.OrderId

Inner Join
oh.CustomerId =

c.CustomerID

Example Parse Tree (Horizontal)

select top 5
od.ProductId,
sum(od.Quantity) - 20 ExcessOrders

from CorpDB.dbo.OrderHeader oh
inner join CorpDB.dbo.OrderDetail od
on oh.OrderId = od.OrderId
inner join CorpDB.dbo.Customer cust
on oh.CustomerId = cust.CustomerID

where cust.State = 'MO'
group by od.ProductId
having sum(od.Quantity) >= 20
order by od.ProductId;

Query Tree

from dbo.OrderHeader oh

inner join dbo.OrderDetail od

inner join dbo.Customer cust

on oh.OrderId = od.OrderId

on oh.CustomerId = cust.CustomerID

where cust.State = 'MO'
group by od.ProductId

having sum(od.Quantity) >= 20

select od.ProductId,

sum(od.Quantity) - 20 ExcessOrders

order by od.ProductId

top 5;

Logical Plans

• Similar to physical execution plans

• Multiple logical plans generated during query
optimization

• Have no physical properties, such as

• Indexes

• Row counts

• Keys

• Logical operators only

11

Showing Query Trees

Trace Flag Result

3604 Output extra information to “Messages” tab in SSMS

8605 Show initial parse tree (converted)

8606 Show transformed parse trees (input, simplified, join-

collapsed, normalized)

8607 Show output tree

11

Optimization (1 of 2)

• Simplification (heuristic rewrites, not cost-based)
• Standardize queries, remove redundancies

• Subqueries to joins

• Predicate pushdown

• Foreign key table removal

• Retrieve statistics; do cardinality estimation
• Create / update auto stats

• SQL Server 7 vs 2014+ CE engine

• Other physical properties (keys, nullability, constraints)

• Trivial plan
• Only one possible way to execute query

3

8

• Contradiction detection

• Aggregates on unique keys

• Convert outer join to inner

Optimization (2 of 2)

• Search phases 0 through 2

• Search 0: “Transaction Processing”
• Simple, basic tests; internal cost threshold

• Search 1: “Quick Plan”
• More rules, parallel exploration; internal cost threshold

• Search 2: “Full Optimization”
• Full set of rules; usually exits on timeout

• Extensive use of heuristics to prune search space

• Construct execution plan

• Plan caching (query text hash, set options) 4

Search Space

• “Every possible execution plan that achieves

the directive of a given query”

• Can be an enormous number of plans

• Consider:
select ...

from a join b on ... join c on ... join d on ...

• Assume a, b, c, d are tables with clustered

index & 3 non-clustered indexes each

select ...
from a join b on ... join c on ... join d on ...

Physical access methods (per table)

Unordered clustered index scan 1

Unordered nonclustered index scan (covering) 3

Ordered clustered index scan 1

Ordered nonclustered index scan (covering) 3

Nonclustered seek + ordered partial scan + lookup 3

Unordered nonclustered index scan + lookup 3

Clustered index seek + ordered partial scan 1

Nonclustered index seek + ordered partial scan (covering) 3

Indexed views 0

Index intersection* 54

Total 72

6 combinations of 2 indexes; 1 join per pair = 6 joins; 3 join methods each = 18

6 combinations of 3 indexes; 2 joins per triplet = 12 joins; 3 join methods each = 36; total = 54 5

select ...
from a join b on ... join c on ... join d on ...

Logical Join Orders: 24 Total (or are there more?)

a⋈b⋈c⋈d c⋈a⋈b⋈d

a⋈b⋈d⋈c c⋈a⋈d⋈b

a⋈c⋈b⋈d c⋈b⋈a⋈d

a⋈c⋈d⋈b c⋈b⋈d⋈a

a⋈d⋈c⋈b c⋈d⋈a⋈b

a⋈d⋈b⋈c c⋈d⋈b⋈a

b⋈a⋈c⋈d d⋈a⋈b⋈c

b⋈a⋈d⋈c d⋈a⋈c⋈b

b⋈c⋈a⋈d d⋈b⋈a⋈c

b⋈c⋈d⋈a d⋈b⋈c⋈a

b⋈d⋈a⋈c d⋈c⋈a⋈b

b⋈d⋈c⋈a d⋈c⋈b⋈a

Join Order Considerations

• So far we’ve only

considered “left-

deep” trees

• n!

Join Order Considerations, continued

• There are also “bushy” trees

• (2n-2)!/(n-1)!

• Optimizer normally

does not

consider

these

6

select ...
from a join b on ... join c on ... join d on ...

▪ 72 possible physical data access

methods

▪ 120 possible logical join orders

▪ 3 physical joins possible per logical join

▪ May require intermediate sort operation

▪ = 25,920 possible plans

▪ Much larger for more complex queries

▪ Optimizer uses heuristics to limit search

space

sys.dm_exec_query_optimizer_info

• Documented. Sort of.

• Three columns:

• counter: Name of the observation

• occurrence: Number of times observation was

recorded

• value: Average per occurrence

• Collect before and after images of this view

on a quiet system

7

Smart Optimization

http://imgs.xkcd.com/comics/efficiency.png

Can the Optimizer Dig a Bit Deeper?

• Trace flag 8780:
• Considerably more

attempts in Search 2

• Very

often still

won’t

come up

with a

different

(or

better)

plan

13

An Interesting Metric: Gain

• Indicates improvement from phase to phase

• Search 0 to 1 gain

• Search 1 to 2 gain

• Value that is >= 0 and < 1
• 0 indicates no improvement

• Approaching 1 indicates significant improvement

• Definition:

𝐺𝑎𝑖𝑛𝑆0 𝑡𝑜 𝑆1 =

𝑀𝑖𝑛𝐶𝑜𝑠𝑡(𝑆0) − 𝑀𝑖𝑛𝐶𝑜𝑠𝑡(𝑆1)

𝑀𝑖𝑛𝐶𝑜𝑠𝑡(𝑆0)

Heuristics and Transformations

• Heuristics

• Rules that can eliminate entire branches of the
search space

• Transformations

• Find equivalent operations to get same output

• Rule-based
• DBCC SHOWONRULES

• DBCC RULEON / RULEOFF

• Four types
• Simplification, exploration, implementation, property enforcement

Transformations: Exploration

• Start from a logical operation (may be a sub-
branch of the full query): the pattern

• Find equivalent logical operations: the
substitute

• Examples:
• Join commutativity: A⋈B → B⋈A

• Join associativity: (A⋈B)⋈C → A⋈(B⋈C)

• Aggregate before join
9

Transformations: Implementation

• Start from a logical operation

• Find equivalent physical operation

• Example:
• A⋈B → A (nested loops join) B

• A⋈B → A (merge join) B

• A⋈B → A (hash join) B

• Obtain costing on physical operations

• Can prune expensive branches from tree

Transformations: Property Enforcement

• Properties associated with parse tree nodes

• Uniqueness, type, nullability, sort order

• Constraints on column values

• Transformation rules may cause certain

properties to be enforced

• Example: sort order for a merge join

sys.dm_exec_query_transformation_stats

• One row per transformation rule

• “Promise_Total” – Estimate of how useful might
the rule be for this query

• “Built_Substitute” – Number of times the rule
generated an alternate tree

• “Succeeded” – Number of times the rule was
incorporated into search space

• Collect before and after images of this view
on a quiet system

10

Factors Considered by the Optimizer

• Memory grants

• Costing

• Cold cache

• Sequential vs random I/O
• But not the nature of the I/O subsystem

• CPU costs, core count, available memory

• Cardinality estimator

• What do cost units really mean?

Memo Structure

• Used to explore different alternatives to a portion
of the query tree

• Can think of it as a matrix

• Rows (groups) represent substitutes – each entry is
logically equivalent

• Columns represent application of a transformation
rule

• Each entry is hashed to prevent duplication

• Physical substitutes are costed

Example Memo

select *

from CorpDB.dbo.OrderDetail od

inner join CorpDB.dbo.OrderHeader oh on od.OrderId = oh.OrderId

inner join CorpDB.dbo.Customer c on c.CustomerID = oh.CustomerId;

Group Option 0

4 Join 2 ⋈ 3

3 Get Customer

2 Join 0 ⋈ 1

1 Get OrderHeader

0 Get OrderDetail

Example Memo

• Apply join associativity:

• (OD ⋈ OH) ⋈ C → OD ⋈ (OH ⋈ C)

Group Option x.0 Option x.1

5.x Join 1.0 ⋈ 3.0

4.x Join 2.0 ⋈ 3.0 Join 0.0 ⋈ 5.1

3.x Get Customer

2.x Join 0.0 ⋈ 1.0

1.x Get OrderHeader

0.x Get OrderDetail

Example Memo

• Apply join commutativity:
• (OD ⋈ OH) ⋈ C → (OH ⋈ OD) ⋈ C

Grou

p

Option x.0 Option x.1 Option x.2

5.x Join 1.0 ⋈ 3.0

4.x Join 2.0 ⋈ 3.0 Join 0.0 ⋈ 5.1 Join 2.2 ⋈ 3.0

3.x Get Customer

2.x Join 0.0 ⋈ 1.0 Join 1.0 ⋈ 0.0

1.x Get OrderHeader

0.x Get OrderDetail

12

The Optimizer Is Exceptionally Complex

• It has to deal with many things we’ve not discussed
• DML (updates, deletes, inserts, merges; output clause)

• Halloween protection

• Triggers

• Index updates

• Constraint management

• Wide vs. narrow updates

• Data warehouse optimization

• Columnstore, full-text, spatial, xml, filtered indexes and sparse columns

• Window functions, partitioned tables, Hekaton, Stretch DB, other new
features

• Row vs. batch mode

• And much more

Conclusions

• SQL is a declarative language

• In theory, it shouldn’t matter how SQL is written
• We are effectively giving SQL Server a set of requirements and

asking it to write a program for us

• In practice, it does matter because no optimizer is
perfect
• It will give us correct results

• In the real world, efficiency matters

• Writing “better” queries

• Sometimes we need to “out-smart” the optimizer

Appendix: Trace Flags

TF Meaning

2363 Show statistics used by optimizer (SQL 2014+ CE) and lots of other info

2372 Show memory usage at each phase

2373 Show memory usage for rules and properties

3604 Output to client (“Messages” tab)

7352 Show final query tree (post-optimization rewrites)

8605 Show initial parse tree (converted)

8606 Show transformed parse trees (input, simplified, join-collapsed,

normalized)

8607 Show output tree

8608 Show initial memo structure

Appendix: Trace Flags, continued

TF Meaning

8609 Show task and operation type counts

8612 Add cardinality info to tree

8615 Show final memo structure

8619 Show applied rules (SQL 2012+)

8620 Show applied rules and memo arguments (SQL 2012+)

8621 Show applied rules and resulting tree (SQL 2012+)

8649 Force parallel plan

8666 Add debugging info to query plan (in the “F4” properties)

8675 Show optimization search phases and times

8757 Disable trivial plan generation

Appendix: Trace Flags, continued

TF Meaning

8780 Give query processor more “time” to optimize query

9130 Show pushed predicate

9204 Show statistics used by optimizer (fully loaded) (SQL 7 CE only)

9292 Show statistics used by optimizer (header only) (SQL 7 CE only)

* And many more …

Appendix: Commands

• DBCC TRACEON / TRACEOFF

• DBCC RULEON / RULEOFF

• DBCC SHOWONRULES

• DBCC SHOWOFFRULES

• option (recompile, querytraceon ####,
queryruleoff ‘xxx’)

• sys.dm_exec_query_optimizer_info

• sys.dm_exec_query_transformation_stats

Appendix: History of SQL’s Optimizer

• Volcano Optimizer (April 1993) (PDF)

• Goetz Graefe, William J. McKenna

• Based on Graefe’s earlier Exodus Optimizer

• Cascades Framework (1995) (PDF)

• Goetz Graefe

• Refinement of the Volcano Optimizer

• Basis for rewritten optimizer in SQL Server 7.0

• Major innovation: the memo structure

http://www.seas.upenn.edu/~zives/03s/cis650/P209.PDF
http://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2013/Papers/Cascades-graefe.pdf

References

• Benjamin Nevarez (Blog)

• Inside the SQL Server Query Optimizer

• Paul White

• Page Free Space blog (especially this series)

• SQL Performance blog

• Conor Cunningham (Blog)

• Microsoft SQL Server 2012 Internals (Kalen Delaney,
editor), chapter 11

• SQLBits Session

http://www.benjaminnevarez.com/
https://www.red-gate.com/library/inside-the-sql-server-query-optimizer
http://sqlblog.com/blogs/paul_white
http://sqlblog.com/blogs/paul_white/archive/2012/04/28/query-optimizer-deep-dive-part-1.aspx
http://sqlperformance.com/author/paulwhitenzgmail-com
http://www.sqlskills.com/blogs/conor/
https://www.sqlbits.com/Sessions/Event6/inside_the_sql_server_query_optimizer

Thank You

• This presentation and supporting materials can be
found at www.tf3604.com/optimizer.

• Slide deck

• Scripts

• Sample database

• SQL Server Query Tree Viewer binaries & source

brian@tf3604.com • @tf3604

http://www.tf3604.com/optimizer

