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Purpose of the Transaction Log

• Primary purposes
• Durability

• Write-ahead logging

• Crash recovery / restore operations

• Atomicity

• Thought experiment
• What would SQL be like without a transaction log?

• Secondary purposes
• Log reader (replication, CDC)

• Mirroring / Availability Groups / log shipping

• Snapshots



What Goes in the Transaction Log?

• Everything that modifies the state any database in 

SQL

• Includes data to redo an operation

• Includes data to undo an operation
• Very limited exceptions for some tempdb operations



Physical vs Logical Log File

• Logical Log File

• Always growing

• Write once / read many
• After being written, log records are never changed

• Physical Log File

• Divided into virtual log files (VLFs)

• Only grows when full (or manually grown)

• VLFs are inactivated when possible and over-written



Organization of the Transaction Log

• The Transaction Log 
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Organization of the Transaction Log

• The Transaction Log 

is just a file …

• With a bit of header 

information …

• Then divided into 

Virtual Log Files.

• Not necessarily of 

equal size
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Virtual Log Files

• VLFs can be in one of 
several statuses:
• Inactive (never used)

• Inactive (previously 
used)

• Active (current)

• Active (not usable)

• Only one VLF is current 
at a time.
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Virtual Log Files

• VLFs can be in one of 
several statuses:

• Inactive (never used)

• Inactive (previously used)

• Active (current)

• Active (not usable)

• Only one VLF is current 
at a time.

• VLFs are numbered.
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Virtual Log Files

• As more records are 

added to the log, 

additional VLFs are 

allocated.
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Virtual Log Files

• As more records are 
added to the log, 
additional VLFs are 
put in use.

• Writing to the log is 
circular so long as 
VLF are available.

• What happens next?
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Virtual Log Files

• The log file has to grow

• More VLFs are added
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Virtual Log Files

• The log file has to grow

• More VLFs are added

• Eventually the log will 

be “truncated” or 

“cleared”
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Organization of the Transaction Log

• VLFs are also 
structured
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VLF Detail

• Again there is a header

• Then a series of log blocks

• In 512 byte increments up to 60K in size
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Log Block Detail

• As expected, starts with a header

• Then a series of log records

• Completely variable in size

• And an index to the log records (slot array)
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Log Record Detail

• Of course, a header
• Record type, transaction ID, length, pointer to 

previous transaction record, etc.

• Payload
• Before/after image of changes

Header Payload



Log Sequence Number

• Each log record can be uniquely identified by its Log 
Sequence Number (LSN)

• An LSN is composed of three parts

• VLF number

• Log Block offset (512-byte chunks, not necessarily 
contiguous)

• Log Record number (slot number)

• The LSN is, in a very real way, a pointer into the 
(logical) log file



LSN Representations

Four common ways to express an LSN

Format Example Common uses

Colon-separated (hexadecimal) 000001c0:0000006b:0005 Log management

Hexadecimal 0x000001c00000006b0005 Change data capture

Decimal 448000000010700005 Backup

Colon-separated (decimal) 448:107:5 Input to fn_dblog

These four LSNs are equivalent



Demo

LSN Converter



DBCC LOGINFO(‘db_name’)

Returns one row per VLF



sys.dm_db_log_info(db_id)

Documented, supported version of DBCC LOGINFO

SQL Server 2016 SP2+

Subtle differences from DBCC LOGINFO
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fn_dblog(start_lsn, end_lsn)

Returns one row per log record
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Related command/function

• DBCC SQLPERF(LOGSPACE)

• Log size, percent used per database

• fn_dump_dblog

• Similar to fn_dblog, but reads from backup file



Checkpoint

• Process of writing dirty pages from the buffer pool 

to disk

• Irrespective of transaction completion



Checkpoint Types

• Automatic
• Period background thread

• Instance-wide [sp_configure 'recovery interval (min)', 2]

• Indirect (2012+)
• Database-specific

• [alter database myDB set target_recovery_time = 2 minutes]

• Off by default in 2012, 2014; on by default in 2016+

• Internal
• During operations such as backup, snapshots, shutdown

• Manual
• CHECKPOINT command



Checkpoint Process

• Write to log: checkpoint start

• Also info about any uncommitted transactions

• Flush the log

• Identify dirty pages; write to disk

• Update boot page with LSN corresponding to 
checkpoint start

• (If SIMPLE recovery) clear the log

• Write to log: checkpoint finish



Flushing the Log

• Flushing = closing a log block

• Triggers

• 60K limit reached

• Transaction commits

• Transaction rollbacks

• Checkpoint



Recovery Models

• Impacts how SQL logs changes

• Simple

• Full

• Bulk-logged



Simple Recovery Model

• Commonly used for test systems or low-volume 

production systems

• What is your recovery point objective?

• All changes logged, but can be “discarded” on 

commit

• Can only recover to the latest full backup



Full Recovery Model

• Probably the most common recovery model for 

production systems

• What is your recovery point objective?

• Log records must be kept until log backup 

completed

• Can recover to an arbitrary point in time



Bulk-logged Recovery Model

• Not frequently used, perhaps temporarily during 

maintenance windows

• What is your recovery point objective?

• Similar to full model, but some changes are only 

“noted” rather than fully logged

• Log backups still include all changes

• Point-in-time recovery not possible



Clearing* the Log (aka Truncating*)
• Marks unneeded portions of log as inactive

• Triggers:
• Simple recovery**: Checkpoint

• Full/bulked-log: Log Backup

• Change from Full or Bulked Logged to Simple***

• Why can’t the log clear?
• Pending log backup

• Active replication / CDC / AG / mirroring

• Long-running transaction

• See sys.databases.log_reuse_wait_desc * Horribly misnamed!  This process clears 
nothing and truncates nothing.

** More technically, when in “auto-truncate” 
mode.

*** But this breaks the backup chain!
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Rolling Back a Transaction

• When a transaction cannot complete, it must 

rollback

• ROLLBACK TRANSACTION command

• Connection is abandoned
• Network failure, KILL, severe errors, client crash

• Non-graceful shutdown of SQL (crash recovery)

• Restore operations

• Rollback operations are single-threaded



Rolling Back a Transaction

• Log records form a 
reverse linked list of 
operations within a 
transaction.

• Let’s suppose the yellow 
transaction needs to roll 
back.

• The first record is for 
“begin transaction.”
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Rolling Back a Transaction

• SQL Server finds the 

last log record for the 

transaction.

• SQL reverses the 

operation in the buffer 

pool.
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Rolling Back a Transaction

• Creates a new log record 
indicating that the 
operation was undone. 
This is called a 
“Compensation” record 
(or “anti-operation”).

• This record then points 
back to the second-to-
last record.
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Rolling Back a Transaction

• The second to last 

operation is undone, 

and a compensation 

record is written that 

points back to the first 

record (the “begin 

transaction”).
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Rolling Back a Transaction

• Finally, an “abort 

transaction” log record 

is written.  It also points 

back to the “begin 

transaction” record.
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Rolling Back a Transaction

• Key takeaways:

• Rollback operations generate log records

• As the initial operations are performed, SQL Server 

will “reserve” log space to ensure that a rollback is 

possible.
• Very large DML operations will reserve a lot of log space (and will 

prevent the log from clearing while in process).  Often better to split 

up into smaller transactions.
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Rollback operations



Creating new VLFs

My transaction log grew.  How many VLFs?

Log growth size New VLFs created

1 to 64 MB 4

64 MB to 1 GB 8

Greater than 1 GB 16

Special case for SQL 2014+

▪ Compute current log size / growth 

amount

▪ If greater than 8, add only 1 new VLF



VLF Trade-Offs

• Too many VLFs create performance problems 

(“VLF Fragmentation”)

• Slows noticeably any time log is read
• Start-up time for database, log reader, backup & restore, etc.

• But smaller VLFs are faster to allocate (zero-init)

• Too few VLFs also create performance problems

• Clearing the log, especially when long-running 

transactions are happening



Pre-Allocating the Log

• Why?

• Eliminate VLF fragmentation

• Avoid log growth during user operations
• Can be time-consuming due to zero-initialization

• However, plan for auto-growth

• Set reasonable auto-growth parameters

• Fixed growth amount, not percentage
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VLF fragmentation



Controlling VLFs

• See the MS Tiger Team solution

• A bit of a hammer – it generates scripts for all 

databases on the instance

• Review the generated script before running it

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs


Log Monitoring

• Watch your VLF count

• Monitor log size over time

• Set SQL Alerts on:

• Severity 17 errors (will alert on log full)

• Error 5145
Autogrow of file '…' in database '…' was cancelled by user or 

timed out after xx milliseconds.

• Error 5144
Autogrow of file '…' in database '…' took xx milliseconds.



Log Monitoring, continued

• PerfMon counters

• One row per counter per database (plus rollup)

• Paul Randal explains what to look for.

select object_name, counter_name, instance_name, cntr_value

from sys.dm_os_performance_counters

where counter_name in ('Log Growths', 'Log Shrinks', 'Percent Log 
Used', 'Log Flush Waits/sec', 'Log Bytes Flushed/sec', 'Log 
Flushes/sec');

3/25/201754 |  

https://sqlperformance.com/2013/11/sql-performance/transaction-log-monitoring


Thank You

This presentation and supporting materials can be found 
at www.tf3604.com/log.

• Slide deck

• Scripts

• Sample database

• SQL Server Log File Visualizer & LSN Converter binaries 

& source
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