
Brian Hansen

brian@tf3604.com

@tf3604

Visualize Your Transaction Log

SQL Saturday #839

Virginia Beach, Virginia

8 June 2019

▪ 20+ Years working

with SQL Server

▪ Development work

since 7.0

▪ Administration

going back to 6.5

▪ Fascinated with SQL

internals

Brian Hansen

@tf3604.com

brian@tf3604.com

children.org

www.tf3604.com/poshadmin

Agenda

• Purpose of the transaction log

• Organization of the transaction log

• Flushing & clearing the log / checkpoints

• Rollback operations

• VLF fragmentation

• Log monitoring

Purpose of the Transaction Log

• Primary purposes
• Durability

• Write-ahead logging

• Crash recovery / restore operations

• Atomicity

• Thought experiment
• What would SQL be like without a transaction log?

• Secondary purposes
• Log reader (replication, CDC)

• Mirroring / Availability Groups / log shipping

• Snapshots

What Goes in the Transaction Log?

• Everything that modifies the state any database in

SQL

• Includes data to redo an operation

• Includes data to undo an operation
• Very limited exceptions for some tempdb operations

Physical vs Logical Log File

• Logical Log File

• Always growing

• Write once / read many
• After being written, log records are never changed

• Physical Log File

• Divided into virtual log files (VLFs)

• Only grows when full (or manually grown)

• VLFs are inactivated when possible and over-written

Organization of the Transaction Log

• The Transaction Log

is just a file …

Organization of the Transaction Log

• The Transaction Log

is just a file …

• With a bit of header

information …

Header

Organization of the Transaction Log

• The Transaction Log

is just a file …

• With a bit of header

information …

• Then divided into

Virtual Log Files.

• Not necessarily of

equal size

Header

VLF

VLF

VLF

VLF

VLF

Virtual Log Files

• VLFs can be in one of
several statuses:
• Inactive (never used)

• Inactive (previously
used)

• Active (current)

• Active (not usable)

• Only one VLF is current
at a time.

Header

VLF

VLF

VLF

VLF

VLF

Virtual Log Files

• VLFs can be in one of
several statuses:

• Inactive (never used)

• Inactive (previously used)

• Active (current)

• Active (not usable)

• Only one VLF is current
at a time.

• VLFs are numbered.

Header

VLF 39

VLF 35

VLF 36

VLF 37

VLF 38

Virtual Log Files

• As more records are

added to the log,

additional VLFs are

allocated.

Header

VLF 39

VLF 35

VLF 36

VLF 37

VLF 38

Virtual Log Files

• As more records are

added to the log,

additional VLFs are

allocated.

Header

VLF 39

VLF 35

VLF 36

VLF 37

VLF 38

Virtual Log Files

• As more records are
added to the log,
additional VLFs are
put in use.

• Writing to the log is
circular so long as
VLF are available.

• What happens next?

Header

VLF 39

VLF 35

VLF 36

VLF 37

VLF 38

Virtual Log Files

• The log file has to grow

• More VLFs are added

Header
VLF 39
VLF 35
VLF 36
VLF 37
VLF 38
VLF 40
VLF 41
VLF 42
VLF 43
VLF 44

Virtual Log Files

• The log file has to grow

• More VLFs are added

• Eventually the log will

be “truncated” or

“cleared”

Header
VLF 45
VLF 46
VLF 47
VLF 48
VLF 49
VLF 40
VLF 41
VLF 42
VLF 43
VLF 44

Organization of the Transaction Log

• VLFs are also
structured

Header

VLF

VLF

VLF

VLF

VLF

VLF

VLF Detail

• Again there is a header

• Then a series of log blocks

• In 512 byte increments up to 60K in size

H
ea

d
er

Lo
g

B
lo

ck

Lo
g

B
lo

ck

Lo
g

B
lo

ck

Lo
g

B
lo

ck

Lo
g

B
lo

ck

Lo
g

B
lo

ck

Log Block Detail

• As expected, starts with a header

• Then a series of log records

• Completely variable in size

• And an index to the log records (slot array)

H
ea

d
er

Lo
g

R
ec

o
rd

Sl
o

t
A

rr
ay

Lo
g

R
ec

o
rd

Lo
g

R
ec

o
rd

Lo
g

R
ec

o
rd

Lo
g

R
ec

o
rd

Log Record Detail

• Of course, a header
• Record type, transaction ID, length, pointer to

previous transaction record, etc.

• Payload
• Before/after image of changes

Header Payload

Log Sequence Number

• Each log record can be uniquely identified by its Log
Sequence Number (LSN)

• An LSN is composed of three parts

• VLF number

• Log Block offset (512-byte chunks, not necessarily
contiguous)

• Log Record number (slot number)

• The LSN is, in a very real way, a pointer into the
(logical) log file

LSN Representations

Four common ways to express an LSN

Format Example Common uses

Colon-separated (hexadecimal) 000001c0:0000006b:0005 Log management

Hexadecimal 0x000001c00000006b0005 Change data capture

Decimal 448000000010700005 Backup

Colon-separated (decimal) 448:107:5 Input to fn_dblog

These four LSNs are equivalent

Demo

LSN Converter

DBCC LOGINFO(‘db_name’)

Returns one row per VLF

sys.dm_db_log_info(db_id)

Documented, supported version of DBCC LOGINFO

SQL Server 2016 SP2+

Subtle differences from DBCC LOGINFO

Demo

DBCC LOGINFO

+ Log File Visualizer

fn_dblog(start_lsn, end_lsn)

Returns one row per log record

Demo

fn_dblog

Related command/function

• DBCC SQLPERF(LOGSPACE)

• Log size, percent used per database

• fn_dump_dblog

• Similar to fn_dblog, but reads from backup file

Checkpoint

• Process of writing dirty pages from the buffer pool

to disk

• Irrespective of transaction completion

Checkpoint Types

• Automatic
• Period background thread

• Instance-wide [sp_configure 'recovery interval (min)', 2]

• Indirect (2012+)
• Database-specific

• [alter database myDB set target_recovery_time = 2 minutes]

• Off by default in 2012, 2014; on by default in 2016+

• Internal
• During operations such as backup, snapshots, shutdown

• Manual
• CHECKPOINT command

Checkpoint Process

• Write to log: checkpoint start

• Also info about any uncommitted transactions

• Flush the log

• Identify dirty pages; write to disk

• Update boot page with LSN corresponding to
checkpoint start

• (If SIMPLE recovery) clear the log

• Write to log: checkpoint finish

Flushing the Log

• Flushing = closing a log block

• Triggers

• 60K limit reached

• Transaction commits

• Transaction rollbacks

• Checkpoint

Recovery Models

• Impacts how SQL logs changes

• Simple

• Full

• Bulk-logged

Simple Recovery Model

• Commonly used for test systems or low-volume

production systems

• What is your recovery point objective?

• All changes logged, but can be “discarded” on

commit

• Can only recover to the latest full backup

Full Recovery Model

• Probably the most common recovery model for

production systems

• What is your recovery point objective?

• Log records must be kept until log backup

completed

• Can recover to an arbitrary point in time

Bulk-logged Recovery Model

• Not frequently used, perhaps temporarily during

maintenance windows

• What is your recovery point objective?

• Similar to full model, but some changes are only

“noted” rather than fully logged

• Log backups still include all changes

• Point-in-time recovery not possible

Clearing* the Log (aka Truncating*)
• Marks unneeded portions of log as inactive

• Triggers:
• Simple recovery**: Checkpoint

• Full/bulked-log: Log Backup

• Change from Full or Bulked Logged to Simple***

• Why can’t the log clear?
• Pending log backup

• Active replication / CDC / AG / mirroring

• Long-running transaction

• See sys.databases.log_reuse_wait_desc * Horribly misnamed! This process clears
nothing and truncates nothing.

** More technically, when in “auto-truncate”
mode.

*** But this breaks the backup chain!

Demo

Simple recovery

Full recovery

Rolling Back a Transaction

• When a transaction cannot complete, it must

rollback

• ROLLBACK TRANSACTION command

• Connection is abandoned
• Network failure, KILL, severe errors, client crash

• Non-graceful shutdown of SQL (crash recovery)

• Restore operations

• Rollback operations are single-threaded

Rolling Back a Transaction

• Log records form a
reverse linked list of
operations within a
transaction.

• Let’s suppose the yellow
transaction needs to roll
back.

• The first record is for
“begin transaction.”

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Rolling Back a Transaction

• SQL Server finds the

last log record for the

transaction.

• SQL reverses the

operation in the buffer

pool.

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Rolling Back a Transaction

• Creates a new log record
indicating that the
operation was undone.
This is called a
“Compensation” record
(or “anti-operation”).

• This record then points
back to the second-to-
last record.

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Rolling Back a Transaction

• The second to last

operation is undone,

and a compensation

record is written that

points back to the first

record (the “begin

transaction”).

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Rolling Back a Transaction

• Finally, an “abort

transaction” log record

is written. It also points

back to the “begin

transaction” record.

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Rolling Back a Transaction

• Key takeaways:

• Rollback operations generate log records

• As the initial operations are performed, SQL Server

will “reserve” log space to ensure that a rollback is

possible.
• Very large DML operations will reserve a lot of log space (and will

prevent the log from clearing while in process). Often better to split

up into smaller transactions.

Demo

Rollback operations

Creating new VLFs

My transaction log grew. How many VLFs?

Log growth size New VLFs created

1 to 64 MB 4

64 MB to 1 GB 8

Greater than 1 GB 16

Special case for SQL 2014+

▪ Compute current log size / growth

amount

▪ If greater than 8, add only 1 new VLF

VLF Trade-Offs

• Too many VLFs create performance problems

(“VLF Fragmentation”)

• Slows noticeably any time log is read
• Start-up time for database, log reader, backup & restore, etc.

• But smaller VLFs are faster to allocate (zero-init)

• Too few VLFs also create performance problems

• Clearing the log, especially when long-running

transactions are happening

Pre-Allocating the Log

• Why?

• Eliminate VLF fragmentation

• Avoid log growth during user operations
• Can be time-consuming due to zero-initialization

• However, plan for auto-growth

• Set reasonable auto-growth parameters

• Fixed growth amount, not percentage

Demo

VLF fragmentation

Controlling VLFs

• See the MS Tiger Team solution

• A bit of a hammer – it generates scripts for all

databases on the instance

• Review the generated script before running it

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs

Log Monitoring

• Watch your VLF count

• Monitor log size over time

• Set SQL Alerts on:

• Severity 17 errors (will alert on log full)

• Error 5145
Autogrow of file '…' in database '…' was cancelled by user or

timed out after xx milliseconds.

• Error 5144
Autogrow of file '…' in database '…' took xx milliseconds.

Log Monitoring, continued

• PerfMon counters

• One row per counter per database (plus rollup)

• Paul Randal explains what to look for.

select object_name, counter_name, instance_name, cntr_value

from sys.dm_os_performance_counters

where counter_name in ('Log Growths', 'Log Shrinks', 'Percent Log
Used', 'Log Flush Waits/sec', 'Log Bytes Flushed/sec', 'Log
Flushes/sec');

3/25/201754 |

https://sqlperformance.com/2013/11/sql-performance/transaction-log-monitoring

Thank You

This presentation and supporting materials can be found
at www.tf3604.com/log.

• Slide deck

• Scripts

• Sample database

• SQL Server Log File Visualizer & LSN Converter binaries

& source

brian@tf3604.com• @tf3604

http://www.tf3604.com/optimizer

