Visualize Your Transaction Log

< >>X(SDQ§SLSATURDAY

Brian Hansen

brian@tf3604.com SQL Saturday #839
Virginia Beach, Virginia

@1f3604 8 June 2019

36.4

COM -----

= 20+ Years working

Brian Hansen with SQL Server
» Development work
since 7.0
K4 brian@tf3604.com @ children = Administration
W @tf3604.com international going back to 6.5
children.org = Fascinated with SQL
internals

www.tf3604.com/poshadmin

<D

Agenda

» Purpose of the transaction log

» Organization of the transaction log

* Flushing & clearing the log / checkpoints
* Rollback operations

» VLF fragmentation

* Log monitoring

<2

Purpose of the Transaction Log

* Primary purposes

* Durability
« Write-ahead logging
 Crash recovery / restore operations

* Atomicity

* Thought experiment
« What would SQL be like without a transaction log?

e Secondary purposes
* Log reader (replication, CDC)
» Mirroring / Availability Groups / log shipping
* Snapshots

<D

What Goes in the Transaction Log?

« Everything that modifies the state any database in
SQL
* Includes data to redo an operation

* Includes data to undo an operation
« Very limited exceptions for some tempdb operations

<D

Physical vs Logical Log File

* Logical Log File
» Always growing

* Write once / read many
 After being written, log records are never changed

* Physical Log File
» Divided into virtual log files (VLFs)

* Only grows when full (or manually grown)
« VLFs are inactivated when possible and over-written

Organization of the Transaction Log

* The Transaction Log
Is just a file ...

<D

Organization of the Transaction Log

* The Transaction Log

Is just a file ...

 With a bit of header
iInformation ...

<2

Organization of the Transaction Log

[\

The Transaction Log
Is just a file ...

With a bit of header
iInformation ...

Then divided into
Virtual Log Files.

* Not necessarily of
equal size

<2

Virtual Log Files

Header

VLFs can be in one of
several statuses:

* Active (not usable)

Only one VLF Is current
at a time.

<2

Virtual Log Files

VLFs can be in one of
several statuses:

« Active (not usable)

Only one VLF is current
at a time.

VLFs are numbered.

<2

Virtual Log Files

Header

As more records are
added to the log,
additional VLFs are
allocated.

<2

Virtual Log Files

Header

As more records are
added to the log,
additional VLFs are
allocated.

<2

Virtual Log Files

Header

As more records are
added to the loq,
additional VLFs are

put |
Writi
circu

N uSe.

ng to the log is
ar so long as

VLF are available.
What happens next?

<2

Virtual Log Files

* The log file has to grow
* More VLFs are added

<2

Virtual Log Files

* The log file has to grow
 More VLFs are added

» Eventually the log will
be "truncated” or
“cleared”

<2

Organization of the Transaction Log

- + VLFs are also
Header
structured

<D

VLF Detall

-
Q
=
a8
o1y
o
—

Log Block
Log Block
Log Block
Log Block
Log Block

* Again there is a header

* Then a series of log blocks
* In 512 byte increments up to 60K Iin size

<D

Log Block Detall

=
| -
v S
'gcv
N
o)
—

Log Record
Log Record
Log Record
Log Record
Slot Array

* As expected, starts with a header

* Then a series of log records
« Completely variable in size

* And an index to the log records (slot array)

<D

Log Record Detall

« Of course, a header

» Record type, transaction ID, length, pointer to
previous transaction record, etc.

« Payload
» Before/after image of changes

<D

Log Sequence Number

» Each log record can be uniquely identified by its Log
Sequence Number (LSN)

* An LSN is composed of three parts

e VLF number

» Log Block offset (512-byte chunks, not necessarily
contiguous)

* Log Record number (slot number)

 The LSN is, In a very real way, a pointer into the
(logical) log file

<D

LSN Representations
Four common ways to express an LSN

Format _________________Example _________|Common uses

Colon-separated (hexadecimal) 000001c0:0000006b:0005 Log management

Hexadecimal 0x000001c00000006b0005 Change data capture
Decimal 448000000010700005 Backup
Colon-separated (decimal) 448:107:5 Input to fn_dblog

These four LSNs are equivalent

<D

Demo
LSN Converter

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

DBCC LOGINFO('db_name’)

Returns one row per VLF
RecoveryUnitld Fileld FileSize StatOffset FSeqMo Status Panty
1 1] 5 e300 | 5150 1203 . o
S o— 5 ey 1204 . o
3 0 2 253952 516096 1205 0 64
4 0 2 278528 770048 1206 0 64
5 0 2 524288 1048576 1207 0 64
6 0 2 524288 1572864 1208 0 64
7 0 2 24288 2087152 1209 0 64
8 0 2 524288 2621440 1210 0 64
9 0 2 24288 3145728 1211 0 64
10 0 2 24288 3670016 1202 0 128
11 0 2 524288 4194304 1212 2 1238
12 0 2 24288 4718552 0 0 64

<D

sys.dm_db_log_info(db_id)

Documented, supported version of DBCC LOGINFO
SQL Server 2016 SP2+

Subtle differences from DBCC LOGINFO

ile_i vif_begin_offset wif site mb vf_seguence_number wif_active v status wif_party v first_lsn

wif_create_|sn

1 6 P 2 8132 243 286 1 2 128 0000011e:00000010:0001 0O0OOO0O0:00000000:0000
S — 5 5 o5 0 0 e | 0000 | 2000
3 6 2 5120000 243 0 0 0 128 00000000:00000000:0000 0O0OOO0O0:00000000:0000
4 6 2 7675904 267 0 0 0 B4 00000000:00000000:0000 00O0OOOOO0:00000000:0000

<D

Demo

DBCC LOGINFO
+ Log File Visualizer

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

fn_dblog(start_lsn, end_Isn)

Returns one row per log record

L= gy == R = S L B L L R

RS | QST | T | Y | NSRS | T | Y
=] T N e W = O

-
a

Cument LSN

- 0DD001c0:00000044:0049 |

000001c0:00000061:0001
000001c0:00000062:0001
000001c0:00000063:0001
000001 0: 000000630002
000001 0: 000000630003
000001c0: 000000630004
000001c0: 000000630005
000001c0: 000000650001
000001c0: 000000650002
000001c0: 000000650003
000001c0:00000067-0001
000001c0: 000000670002
000001c0: 000000670003
000001c0: 000000670004
000001c0:00000063: 0001
000001c0: 000000650002

MM A - MMM - D

Dpemtlnn

| LOP_BEGIN_CKPT
LOP_XACT_CKPT
LOP_EMD_CKPT
LOP_SET_BITS
LOP_BEGIN_XACT
LOP_MODIFY_COLUMNS
LOP_MODIFY_COLUMNS
LOP_COMMIT_¥ACT
LOP_FILE_HDR_MODIFY
LOP_MODIFY_ROW
LOP_MODIFY_ROW
LOP_BEGIN_XACT
LOP_MODIFY_ROW
LOP_PREP_XACT
LOP_COMMIT_¥ACT
LOP_FORGET_¥ACT
LOP_BEGIM_XACT

a0 RACRIEY Sl | IKAKIS

ntext
LC}{_NULL
LCX_BOOT_PAGE_CKPT
LCX_NULL
LCX_DIFF_MAR
LCX_NULL
LCX_CLUSTERED
LCX_CLUSTERED
LC¥_ NULL
LCX_FILE_HEADER
LCX_BOOT_PAGE_CKPT
LCX_BOOT _PAGE CKPT
LCX_NULL
LCX_CLUSTERED
LCX_NULL
LC¥_ NULL
LCX¥_NULL
LCX_NULL

&% IS TEDET

Transaction D

0000:00000000
000000000000
000000000000
0000:00000000
000000004429
000000004429
0000:-0000dd 29
0000:0000dd.29
000000000000
000000000000
000000000000
0000:0000dd 2a
0000:0000dd 2a
0000:0000dd 2a
0000:0000dd 2a
0000:0000dd2a
0000:0000dd 2b

MR- M- A

LogBlockGeneration

= = I = N = R = R = Y = [== [= R I~ R — I~ N — D — I~ I~ = |

<D

Demo
fn_dblog

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

Related command/function

 DBCC SQLPERF(LOGSPACE)

» Log size, percent used per database
« fn_dump_dblog
« Similar to fn_dblog, but reads from backup file

<D

Checkpoint

Process of writing dirty pages from the buffer pool
to disk

* |rrespective of transaction completion

<D

Checkpoint Types

* Automatic

* Period background thread

° nstance-wide [sp_configur‘e 'recovery interval (min)', 2]
 Indirect (2012+)

« Database-specific

° :alter database myDB set target recovery time = 2 minutes]

« Off by default in 2012, 2014; on by default in 2016+
* [Internal

* During operations such as backup, snapshots, shutdown
* Manual

e CHECKPOINT command

<2

Checkpoint Process

* Write to log: checkpoint start

* Also info about any uncommitted transactions
* Flush the log

 |dentify dirty pages; write to disk

» Update boot page with LSN corresponding to
checkpoint start

* (If SIMPLE recovery) clear the log
» Write to log: checkpoint finish

<D

Flushing the Log

» Flushing = closing a log block
» Triggers

* 60K limit reached

* Transaction commits

 Transaction rollbacks
* Checkpoint

<D

Recovery Models

* Impacts how SQL logs changes
« Simple
* Full
* Bulk-logged

<D

Simple Recovery Model

Commonly used for test systems or low-volume
production systems

* What is your recovery point objective?

All changes logged, but can be “discarded” on
commit

Can only recover to the latest full backup

<D

Full Recovery Model

Probably the most common recovery model for
production systems
* What is your recovery point objective?

Log records must be kept until log backup
completed

Can recover to an arbitrary point in time

<D

Bulk-logged Recovery Model

Not frequently used, perhaps temporarily during
maintenance windows

* What is your recovery point objective?

Similar to full model, but some changes are only
“noted” rather than fully logged

Log backups still include all changes
Point-in-time recovery not possible

<D

Clearlng the Log (aka Truncating?*)
Marks unneeded portions of log as inactive
* Triggers:

* Simple recovery**: Checkpoint
* Full/bulked-log: Log Backup
« Change from Full or Bulked Logged to Simple***

 Why can't the log clear?
* Pending log backup
* Active replication / CDC / AG / mirroring
* Long-running transaction

¢ See sys.databases.log reuse wait desc | * Horribly misnamed! This process clears

nothing and truncates nothing.

mode.
*** But this breaks the backup chain!

** More technically, when in “auto-truncate”

<D

Demo

Simple recovery

Full recovery

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

Rolling Back a Transaction

 When a transaction cannot complete, it must
rollback
 ROLLBACK TRANSACTION command

e Connection is abandoned
 Network failure, KILL, severe errors, client crash

* Non-graceful shutdown of SQL (crash recovery)
» Restore operations

» Rollback operations are single-threaded

<D

Header
Header
Header
Header

Header
Header
Header
Header

Payload
Payload
Payload
Payload
Payload
Payload
Payload
Payload

N
53

Rolling Back a Transaction

Log records form a

reverse linked list of
operations within a

transaction.

Let's suppose the yellow
transaction needs to roll

back.

The first record is for
"begin transaction.”

<D

Rolling Back a Transaction

Header Payload [

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

SQL Server finds the
last log record for the
transaction.

SQL reverses the
operation in the buffer
pool.

v

Vi

i
I
v

<D

Rolling Back a Transaction

Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header Payload

Creates a new log record
Indicating that the
operation was undone.
This i1s called a
"Compensation” record
(or "anti-operation”).

* This record then points
back to the second-to-
last record.

A \/

|
|
%

IIIIII
i‘i‘i‘
1&

<D

Rolling Back a Transaction

Header

Header
Header

>

Header
Header
Header
Header

Payload
Payload
Payload

Payload
Payload
Payload
Payload

o—

7
N

)

The second to last
operation is undone,
and a compensation
record Is written that
points back to the first
record (the "begin
transaction”).

<D

Rolling Back a Transaction

Header| Payload
Header| Payload
Header| Payload
Header| Payload
Header| Payload
Header Payload
Header Payload
Header Payload
Header Payload
Header| Payload
Header| Payload

 Finally, an "abort
transaction” log record
Is written. It also points
back to the “begin
transaction” record.

i
I
7

/ N\

&

'

<D

Rolling Back a Transaction

« Key takeaways:
* Rollback operations generate log records

* As the initial operations are performed, SQL Server
will “reserve” log space to ensure that a rollback is

possible.

« Very large DML operations will reserve a lot of log space (and will
prevent the log from clearing while in process). Often better to split
up into smaller transactions.

<D

Demo

Rollback operations

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

Creating new VLFs

My transaction log grew. How many VLFs?

Log growth size New VLFs created

1 to 64 MB 4
64 MB to 1 GB 8
Greater than 1 GB 16

Special case for SQL 2014+

= Compute current log size / growth
amount

= |f greater than 8, add only 1 new VLF

<D

VLF Trade-Offs

* Too many VLFs create performance problems
("VLF Fragmentation®)

* Slows noticeably any time log Is read
 Start-up time for database, log reader, backup & restore, etc.

 But smaller VLFs are faster to allocate (zero-init)

* Too few VLFs also create performance problems

* Clearing the log, especially when long-running
transactions are happening

<D

Pre-Allocating the Log

* Why?
 Eliminate VLF fragmentation
* Avoid log growth during user operations

 Can be time

However, pla
e Setreasona
* Fixed growt

-consuming due to zero-initialization

n for auto-growth
ole auto-growth parameters

N amount, not percentage

<D

Demo

VLF fragmentation

D D000 ODRDO DO LB

DADRRDOOLDRADDC I DOBD
BBORLYBORORKRMRAT DR
D0RB0BOBORKRORY U DO
DOD) D000 RO

<D

Controlling VLFs

» See the MS Tiger Team solution

* A bit of a hammer — it generates scripts for all
databases on the instance

* Review the generated script before running it

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs

<D

https://github.com/Microsoft/tigertoolbox/tree/master/Fixing-VLFs

Log Monitoring

Watch your VLF count
Monitor log size over time
Set SQL Alerts on:

» Severity 17 errors (will alert on log full)
* Error 5145

Autogrow of file '..' in database '..' was cancelled by user or
timed out after xx milliseconds.

* Error 5144

Autogrow of file '.' in database '.' took xx milliseconds.

<D

342%/2017

Log Monitoring, continued

* PerfMon counters
* One row per counter per database (plus rollup)
« Paul Randal explains what to look for.

select object name, counter_name, instance name, cntr_value
from sys.dm _os_performance_ counters

where counter_name in ('Log Growths', 'Log Shrinks', 'Percent Log
Used', 'Log Flush Waits/sec', 'Log Bytes Flushed/sec', 'Log
Flushes/sec');

<D

https://sqlperformance.com/2013/11/sql-performance/transaction-log-monitoring

Thank You

This presentation and supporting materials can be found
at www.tf3604.com/log.

 Slide deck

* Scripts

« Sample database

« SQL Server Log File Visualizer & LSN Converter binaries
& source

brian@tf3604.com e+ @tf3604 o5

http://www.tf3604.com/optimizer

