
Let’s Explore SQL Storage

Internals

Brian Hansen

brian@tf3604.com

@tf3604

Welcome to SQLSaturday #767!

Hosted by

Lincoln SQL Server User Group

Visit http://Lincoln.pass.org for meeting & group information

http://lincoln.pass.org/

Be sure to give our sponsors some #SQLLove

After Event Networking Gathering
Stop over to Cabin #15 after the event to network with #SQLFamily

 20 Years working

with SQL Server

 Development work

since 7.0

 Administration

going back to 6.5

 Fascinated with SQL

internals

Brian Hansen

@tf3604.com

brian@tf3604.com

children.org

www.tf3604.com/internals

Agenda

• Why understand internals

• Basic data file structures

• GAM, SGAM, PFS and IAM pages

• Other page structures

• Data and index pages

Why understand storage internals?

• Stronger foundation for

• Designing databases and tables
• Maximizing storage utilization

• Better performance

• Help the optimizer come up with good plans
• Better performance

• Better performance

Prologue

This thing we call a database …

… is really just a couple of files

• Data file

• Log file

The data file

• Basic unit is the 8KB page

• Grouped into extents of 8 pages (64KB)

• Extents can be “mixed” or “uniform”

Pages

• Again, are 8KB in size (8192 bytes)

• 96-byte header

• 8096-byte payload

What goodies are the page header?

• Page number (starts at 0)
• Reported as (1:1234) file 1, page 1234

• Page type (details on next slide)

• Object ID of page’s owner

• Allocation Unit ID of page’s owner

• Last update LSN of page

• Checksum

• Pointer to previous and next page in chain

• And much more

Page types
ID Description

1 Data

2 Index

3 Mixed text

4 Text data

8 GAM

9 SGAM

10 IAM

11 PFS

13 Boot

ID Description

15 File header

16 DCM

17 BCM

7 Intermediate (sort)

18 Intermediate (CHECKDB)

19 Intermediate (reorg)

20 Intermediate (bulk load)

Types of tables

• Heaps

• Data is not ordered

• Clustered table

• Clustered index defines table order

• Data structure contains multiple “levels”
• Root node (page)

• Internal nodes

• Leaf nodes

Part 1

GAM pages (global allocation map)

• Page 2 in file

• Page (511,232 ✖ n)† in file (every 3.90 GB)

• Each bit in the page tracks one extent in the file

Value Meaning

0 Extent is allocated

1 Extent is not allocated

† Unless (511,232 ✖ n) is a multiple of 8088, in which case the GAM page falls on (511,232 ✖ n) ＋ 1

SGAM pages (shared global allocation map)

• Page 3 in file

• Page (511,232 ✖ n ＋ 1)† in file (every 3.90 GB)

• Each bit in the page tracks one extent in the file

Value Meaning

0 Dedicated extent or mixed extent that is full

1 Mixed extent with unallocated pages

† Unless (511,232 ✖ n) is a multiple of 8088, in which case the SGAM page falls on (511,232 ✖ n) ＋ 2

Putting GAM and SGAM together

GAM Meaning

0 Extent is allocated

1 Extent is not allocated

SGAM Meaning

0 Dedicated extent or mixed extent (full)

1 Mixed extent with unallocated pages

GAM bit SGAM bit Meaning

0 0 Dedicated extent or mixed extent that is full

0 1 Mixed extent with unallocated pages

1 0 Free extent, not in use

1 1 ERROR: Invalid

IAM pages (index allocation map)

• Associated to an allocation unit

• Each bit tracks one extent in the file

• But wait … what is an “allocation unit”?

Allocation units

• Introduced in SQL Server 2005

• Can be one of the following:

• Hobt (heap or b-tree)

• LOB data

• Row overflow data (SLOB)

• See sys.allocation_units

Partitions

• Every table contains one or more partitions

• Multiple partitions only supported in Enterprise

Edition up through SQL 2016 SP1

• Supported in all editions starting with SQL 2016 SP1

• Non-clustered indexes on a partitioned table will

also have multiple partitions

Back to IAM pages

• Associated to an allocation unit

• Each bit tracks one extent in the file

• So a table will have one IAM page for each

• Partition
• Index (clustered / heap and non-clustered)

• In-row data

• LOB data

• Overflow data

• Each of these is the first in an “IAM chain” of pages

What does the IAM bit mean?

Value Meaning

0 Extent is allocated to the allocation unit

1 Extent is not allocated to the allocation unit

Part 2

PFS pages (page free space)

• Page 1 in file

• Page (8,088 ✖ n) in file (every 63 MB)

• Each byte in the page tracks one page in the file

• Different bits in the byte have specific meanings

PFS pages (page free space)

Bit # Description Value Meaning

0 to 2

Percent of free

space on LOB or

heap page

0 Page is empty

1 Page is 1% to 50% full

2 Page is 51% to 80% full

3 Page is 81% to 95% full

4 Page is >= 96% full

3 Ghost records
0 Page has no ghost records

1 Page has ghost records

PFS pages (page free space)

Bit # Description Value Meaning

4 IAM page
0 Page is not an IAM page

1 Page is an IAM page

5 Mixed page
0 Page is not on a mixed extent

1 Page is on a mixed extent

6 Allocation
0 Page is not allocated

1 Page is allocated

7 Not used

Part 3

DBCC IND

• Undocumented

• Returns the IAM chains associated to an object

DBCC IND example

dbcc ind ('CorpDB', 'Customer', 1);

DBCC IND

DBCC IND

DBCC IND

DBCC IND

DBCC IND

DBCC IND

DBCC IND

DBCC PAGE

• Undocumented; combine with trace flag 3604

• Outputs contents of page

print meaning print meaning

0 Header only 2 Page and slots

1 Rows and slots 3 Detailed interpretation

DBCC PAGE example

dbcc traceon (3604);

dbcc page ('CorpDB', 1, 489, 3);

DBCC PAGE output

DBCC PAGE output

DBCC PAGE output

DBCC PAGE output

Part 4

DCM pages (differential change map)

• Page 6 in file

• Page (511,232 ✖ n ＋ 6) in file (every 3.90 GB)

• Each bit in the page tracks one extent in the file

Value Meaning

0 Extent is unchanged since last full backup

1 Extent is changed since last full backup

BCM pages (bulk change map)

• Page 7 in file

• Page (511,232 ✖ n ＋ 7) in file (every 3.90 GB)

• Each bit in the page tracks one extent in the file

Value Meaning

0 Extent has minimally logged operations since

last log backup

1 Extent has no minimally logged operations

since last log backup

Part 5

File header page

• One per file, always page 0

• Selected contents

• Logical name

• File size and growth

• LSNs and GUIDs

Boot page

• One per database, always page 9 in file 1

• Selected contents

• Database name / version

• Last backup times / LSNs / GUIDs

• Last CHECKDB time

• Database configuration settings

The file headers and boot page are critical

• If one of these pages gets corrupted …

• … There is no magical repair option

• ** RESTORE FROM BACKUP **

Part 6

Types of data

• In-row data (data page)

• Index data (index page)

• LOB data (mixed text page or text data page)

• Other:

• Forwarding records (heaps)

• Ghost records

B-Tree structure

Heaps

Data pages

Record structure

• NULL bitmap

• One bit per column (regardless of whether the

column is nullable)

• Fixed-length data

• int, bigint, char(x), nchar(x), binary(x), datetime,

datetime2(x)

• Variable-length data

• varchar(x), nvarchar(x), varbinary(x)

Record structure

Name Size (bytes) Description

Status 2 Status bits

FSize 2 Fixed-length data size

FData FSize - 4 Fixed-length data

ColCount 2 Number of columns

NullBitMap ColCount / 8 NULL bitmap (0 = not null; 1 = null)

VCount 2 Number of variable-length columns

VOffsets VCount ✖ 2 Variable-length column offsets

VData variable Variable-length data

Data record example

create table dbo.CustomerInfo

(
CustomerID int not null,

FirstName varchar(50) not null,

LastName varchar(50) not null,

OrderCount int not null default(0),

FirstOrderDate datetime null,

LastOrderDate datetime null

);

Sample records

dbcc traceon (3604);

dbcc page ('CorpDB', 1, 6406, 3);

DBCC PAGE output

DBCC PAGE output

Status bits

Status Bits = 0x0030 = 0000 0000 0011 0000

Has NULL bitmap, has variable-length columns

Fixed-length data size

0x001c (28 bytes)

Fixed-length data

0x00004e39 = 20025

0x9f52 = 40786 (days past 1900-01-01)

Number of columns

6 columns

NULL bitmap

No NULL data

Number of variable-length columns

2 variable-length columns

Variable-length columns offsets

Marks where each variable-length column data ends

Variable-length data

String data (either one or two bytes per character)

DBCC PAGE output

NULL bitmap

NULL bitmap = 0011 0000

Ack! I can’t read DBCC PAGE!

• Some feature will made DBCC PAGE not human

readable

• Transparent data encryption

• Compression

• Columnstore

• In-Memory OLTP (good luck finding a page number)

Checkpoint

• Process of writing dirty pages from the buffer pool

to disk

• Irrespective of transaction completion

Checkpoint Types

• Automatic
• Period background thread

• Instance-wide [sp_configure 'recovery interval (min)', 2]

• Indirect (2012+)
• Database-specific

• [alter database myDB set target_recovery_time = 2 minutes]

• Off by default in 2012, 2014; on by default in 2016+

• Internal
• During operations such as backup, snapshots, shutdown

• Manual
• CHECKPOINT command

Checkpoint Process

• Write to log: checkpoint start

• Also info about any uncommitted transactions

• Flush the log

• Identify dirty pages; write to disk

• Update boot page with LSN corresponding to
checkpoint start

• (If SIMPLE recovery) clear the log

• Write to log: checkpoint finish

Part 7

Index pages

• B-Tree structure same as clustered index

• Only key values in root and internal nodes

• Included column data only in leaf nodes

• Always includes reference back to table

• If table is a clustered index, includes the clustering

keys (no duplicates!); may require “uniquifier”

• If table is a heap, includes a “row identifier”

(file:page:slot)

Epilogue

Summary

• Data files are organized into extents and pages

• Many page types

• Several bitmaps to store allocation data

• Miscellaneous pages (boot, file header, PFS)

• Data pages and index pages

Summary

• Understanding storage internals will help

• Better table design

• More efficient use of storage systems

• More efficient SQL operations (i.e., faster!)

Appendix

Commands

Command Description Example

DBCC PAGE * Outputs contents of a page dbcc page ('CorpDB',
1, 2, 3);

DBCC IND Outputs pages associated to an

index

dbcc ind ('CorpDB',
'Customer', 1);

DBCC FILEHEADER * Outputs contents of file header

page

dbcc fileheader
('CorpDB', 1);

DBCC DBINFO * Outputs contents of boot page dbcc dbinfo;

* Turn on trace flag 3604

Commands

Command Description Example

%%physloc%% Virtual column indicating

location of a row

select *,
%%physloc%% from
table

sys.fn_PhysLocForma

tter

Formats %%physloc%% select *,
sys.fn_PhysLocFormat
ter(%%physloc%%)
from table

Resources

• Paul Randal’s “Inside the Storage Engine” series

• Anatomy of a record - a page - an extent

• IAM pages – Bitmap pages – Header pages – Boot

page

• Kalen Delaney, SQL Server 2008 Internals

https://www.sqlskills.com/blogs/paul/category/inside-the-storage-engine/
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-anatomy-of-a-record/
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-anatomy-of-a-page/
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-anatomy-of-an-extent/
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-iam-pages-iam-chains-and-allocation-units/
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-gam-sgam-pfs-and-other-allocation-maps/
https://www.sqlskills.com/blogs/paul/search-engine-qa-21-file-header-pages-and-file-header-corruption/
https://www.sqlskills.com/blogs/paul/search-engine-qa-20-boot-pages-and-boot-page-corruption/

Thank You

• This presentation and supporting materials can be

found at www.tf3604.com/internals.

• Slide deck

• Scripts

• Sample database

brian@tf3604.com • @tf3604

http://www.tf3604.com/internals

